Di, Chong-Zhi; Crainiceanu, Ciprian M.; Caffo, Brian S.; Punjabi, Naresh M. Multilevel functional principal component analysis. (English) Zbl 1160.62061 Ann. Appl. Stat. 3, No. 1, 458-488 (2009). Summary: The Sleep Heart Health Study (SHHS) is a comprehensive landmark study of sleep and its impacts on health outcomes. A primary metric of the SHHS is the in-home polysomnogram, which includes two electroencephalographic (EEG) channels for each subject, at two visits. The volume and importance of this data presents enormous challenges for analysis. To address these challenges, we introduce multilevel functional principal component analysis (MFPCA), a novel statistical methodology designed to extract core intra- and inter-subject geometric components of multilevel functional data. Though motivated by the SHHS, the proposed methodology is generally applicable, with potential relevance to many modern scientific studies of hierarchical or longitudinal functional outcomes. Notably, using MFPCA, we identify and quantify associations between EEG activity during sleep and adverse cardiovascular outcomes. Cited in 95 Documents MSC: 62H25 Factor analysis and principal components; correspondence analysis 92C20 Neural biology 62P10 Applications of statistics to biology and medical sciences; meta analysis Keywords:FPCA; multilevel models Software:SemiPar; fda (R) PDFBibTeX XMLCite \textit{C.-Z. Di} et al., Ann. Appl. Stat. 3, No. 1, 458--488 (2009; Zbl 1160.62061) Full Text: DOI arXiv References: [1] Baladandayuthapani, V., Mallick, B. K., Hong, M. Y., Lupton, J. R., Turner, N. D. and Carroll, R. J. (2008). Bayesian hierarchical spatially correlated functional data analysis with application to colon carcinogenesis. Biometrics 64 64-73. · Zbl 1274.62715 · doi:10.1111/j.1541-0420.2007.00846.x [2] Besse, P. and Ramsay, J. O. (1986). Principal components analysis of sampled functions. Psychometrika 51 285-311. · Zbl 0623.62048 · doi:10.1007/BF02293986 [3] Bigelow, J. L. and Dunson, D. B. (2007). Bayesian adaptive regression splines for hierarchical data. Biometrics 63 724-732. · Zbl 1147.62089 · doi:10.1111/j.1541-0420.2007.00761.x [4] Borbely, A. A. and Achermann, P. (1999). Sleep homeostasis and models of sleep regulation. J. Biological Rhythms 14 557. [5] Brumback, B. A. and Rice, J. A. (1998). Smoothing spline models for the analysis of nested and crossed samples of curves. J. Amer. Statist. Assoc. 93 961-976. · Zbl 1064.62515 · doi:10.2307/2669837 [6] Carrier, J., Land, S., Buysse, D. J., Kupfer, D. J. and Monk, T. H. (2001). The effects of age and gender on sleep EEG power spectral density in the middle years of life (ages 20-60 years old). Psychophysiology 38 232-242. [7] Carroll, R. J., Ruppert, D., Stefanski, L. A. and Crainiceanu, C. M. (2006). Measurement Error in Nonlinear Models : A Modern Perspective , 2nd ed. Chapman and Hall/CRC Press, Boca Raton, FL. · Zbl 1119.62063 [8] Crainiceanu, C. M., Caffo, B. S., Di, C.-Z. and Naresh, P. M. (2009). Nonparametric signal extraction and measurement error in the analysis of electroencephalographic activity during sleep. J. Amer. Statist. Assoc. · Zbl 1388.62316 · doi:10.1198/jasa.2009.0020 [9] Di, C.-Z., Crainiceanu, C. M., Caffo, B. S. and Punjabi, N. M. (2009). Supplment to “Multilevel functional principal component analysis.” DOI: 10.1214/08-AOAS206SUPP. · Zbl 1160.62061 · doi:10.1214/08-AOAS206 [10] Diggle, P. J., Heagerty, P., Liang, K.-Y. and Zeger, S. L. (2002). The Analysis of Longitudinal Data . Oxford Univ. Press. · Zbl 1031.62002 [11] Fan, J. and Gijbels, I. (1996). Local Polynomial Modelling and Its Applications. Monographs on Statistics and Applied Probability 66 . Chapman & Hall, London. · Zbl 0873.62037 [12] Goldstein, H. (1995). Multilevel Statistical Models . A Hodder Arnold Publication, London. · Zbl 1014.62126 [13] Guo, W. (2002). Functional mixed effects models. Biometrics 58 121-128. · Zbl 1209.62072 · doi:10.1111/j.0006-341X.2002.00121.x [14] Hall, P. and Hosseini-Nasab, M. (2006). On properties of functional principal components analysis. J. R. Stat. Soc. Ser. B Statist. Methodol. 68 109-126. · Zbl 1141.62048 · doi:10.1111/j.1467-9868.2005.00535.x [15] Hall, P., Müller, H.-G. and Yao, F. (2008). Modeling sparse generalized longitudinal observations with latent Gaussian processes. J. R. Stat. Soc. Ser. B Statist. Methodol. 70 703-723. · Zbl 05563365 · doi:10.1111/j.1467-9868.2008.00656.x [16] Indritz, J. (1963). Methods in Analysis . Macmillan, New York. · Zbl 0129.26901 [17] James, G. M., Hastie, T. J. and Sugar, C. A. (2000). Principal component models for sparse functional data. Biometrika 87 587-602. · Zbl 0962.62056 · doi:10.1093/biomet/87.3.587 [18] Karhunen, K. (1947). Über lineare Methoden in der Wahrscheinlichkeitsrechnung . Suomalainen Tiedeakatemia. · Zbl 0030.16502 [19] Laird, N. and Ware, J. (1982). Random-effects models for longitudinal data. Biometrics 38 963-974. · Zbl 0512.62107 · doi:10.2307/2529876 [20] Lin, X. and Carroll, R. J. (2000). Nonparametric function estimation for clustered data when the predictor is measured without/with error. J. Amer. Statist. Assoc. 95 520-534. · Zbl 0995.62043 · doi:10.2307/2669396 [21] Loève, M. (1945). Fonctions aléatoires de second ordre. C. R. Acad. Sci. 220 469. [22] Massimini, M., Ferrarelli, F., Esser, S. K., Riedner, B. A., Huber, R., Murphy, M., Peterson, M. J. and Tononi, G. (2007). Triggering sleep slow waves by transcranial magnetic stimulation. Proc. Natl. Acad. Sci. 104 84-96. [23] Morris, J. S., Brown, P. J., Herrick, R. C., Baggerly, K. A. and Coombes, K. R. (2008). Bayesian analysis of mass spectrometry proteomic data using wavelet-based functional mixed models. Biometrics 64 479-489. · Zbl 1137.62399 · doi:10.1111/j.1541-0420.2007.00895.x [24] Morris, J. S. and Carroll, R. J. (2006). Wavelet-based functional mixed models. J. Roy. Statist. Soc. Ser. B 68 179-199. · Zbl 1110.62053 · doi:10.1111/j.1467-9868.2006.00539.x [25] Morris, J. S., Vannucci, M., Brown, P. J. and Carroll, R. J. (2003). Wavelet-based nonparametric modeling of hierarchical functions in colon carcinogenesis. J. Amer. Statist. Assoc. 98 573-584. · Zbl 1040.62104 · doi:10.1198/016214503000000422 [26] Müller, H.-G. (2005). Functional modelling and classification of longitudinal data. Scand. J. Statist. 32 223-240. · Zbl 1089.62072 · doi:10.1111/j.1467-9469.2005.00429.x [27] Quan, S. F., Howard, B. V., Iber, C., Kiley, J. P., Nieto, F. J., O’Connor, G. T., Rapoport, D. M., Redline, S., Robbins, J., Samet, J. M. and Wahl, P. W. (1997). The sleep heart health study: Design, rationale, and methods. Sleep 20 1077-1085. [28] Ramsay, J. O. and Dalzell, C. J. (1991). Some tools for functional data analysis. J. R. Stat. Soc. Ser. B Statist. Methodol. 53 539-572. · Zbl 0800.62314 [29] Ramsay, J. O. and Silverman, B. W. (2005). Functional Data Analysis . Springer. · Zbl 1079.62006 [30] Raudenbush, S. W. and Bryk, A. S (2002). Hierarchical Linear Models : Applications and Data Analysis Methods , 2nd ed. Advanced Quantitative Techniques in the Social Sciences Series 1 . Sage, Thousand Oaks, CA. · Zbl 1137.62037 · doi:10.1111/j.1541-0420.2007.00818.x [31] Rice, J. A. and Silverman, B. W. (1991). Estimating the mean and covariance structure nonparametrically when the data are curves. J. R. Stat. Soc. Ser. B Statist. Methodol. 53 233-243. · Zbl 0800.62214 [32] Ruppert, D., Wand, M. P. and Carroll, R. J. (2003). Semiparametric Regression. Cambridge Series in Statistical and Probabilistic Mathematics 12 . Cambridge Univ. Press, Cambridge. · Zbl 1038.62042 [33] Shahar, E., Whitney, C. W., Redline, S., Lee, E. T., Newman, A. B., Javier Nieto, F., O’connor, G. T., Boland, L. L., Schwartz, J. E. and Samet, J. M. (2001). Sleep-disordered breathing and cardiovascular disease cross-sectional results of the Sleep Heart Health Study. American J. Respiratory and Critical Care Medicine 163 19-25. [34] Silverman, B. W. (1996). Smoothed functional principal components analysis by choice of norm. Ann. Statist. 24 1-24. · Zbl 0853.62044 · doi:10.1214/aos/1033066196 [35] Sing, H. C., Kautz, M. A., Thorne, D. R., Hall, S. W., Redmond, D. P., Johnson, D. E., Warren, K., Bailey, J. and Russo, M. B. (2005). High-frequency EEG as measure of cognitive function capacity: A preliminary report. Aviation , Space and Environmental Medicine 76 C114-C135. [36] Staniswalis, J. G. and Lee, J. J. (1998). Nonparametric regression analysis of longitudinal data. J. Amer. Statist. Assoc. 93 1403-1404. · Zbl 1064.62522 · doi:10.2307/2670055 [37] Tassi, P., Bonnefond, A., Engasser, O., Hoeft, A., Eschenlauer, R. and Muzet, A. (2006). EEG spectral power and cognitive performance during sleep inertia: the effect of normal sleep duration and partial sleep deprivation. Physiological Behavior 87 177-184. [38] Van Cauter, E., Leproult, R. and Plat, L. (2000). Age-related changes in slow wave sleep and rem sleep and relationship with growth hormone and cortisol levels in healthy men. J. Amer. Medical Assoc. 284 861-868. [39] Yao, F., Müller, H.-G., Clifford, A. J., Dueker, S. R., Follett, J., Lin, Y., Buchholz, B. A. and Vogel, J. S. (2003). Shrinkage estimation for functional principal component scores with application to the population kinetics of plasma folate. Biometrics 59 676-685. · Zbl 1210.62076 · doi:10.1111/1541-0420.00078 [40] Yao, F., Müller, H.-G. and Wang, J. L. (2005). Functional data analysis for sparse longitudinal data. J. Amer. Statist. Assoc. 100 577-591. · Zbl 1117.62451 · doi:10.1198/016214504000001745 [41] Zhang, L., Samet, J., Caffo, B. S. and Punjabi, N. M. (2006). Cigarette smoking and nocturnal sleep architecture. American Journal of Epidemiology 164 529. This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.