Multiscale local change point detection with applications to value-at-risk. (English) Zbl 1160.62084

Summary: This paper offers a new approach to modeling and forecasting of nonstationary time series with applications to volatility modeling for financial data. The approach is based on the assumption of local homogeneity: for every time point, there exists a historical interval of homogeneity, in which the volatility parameter can be well approximated by a constant. The proposed procedure recovers this interval from the data using the local change point (LCP) analysis. Afterward, the estimate of the volatility can be simply obtained by local averaging.
The approach carefully addresses the question of choosing the tuning parameters of the procedure using the so-called “propagation” condition. The main result claims a new “oracle” inequality in terms of the modeling bias which measures the quality of the local constant approximation. This result yields the optimal rate of estimation for smooth and piecewise constant volatility functions. Then the new procedure is applied to some data sets and a comparison with a standard GARCH model is also provided. Finally, we discuss applications of the new method to the value at risk problem. The numerical results demonstrate a very reasonable performance of the new method.


62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M20 Inference from stochastic processes and prediction
62P05 Applications of statistics to actuarial sciences and financial mathematics
62G05 Nonparametric estimation
65C60 Computational problems in statistics (MSC2010)
Full Text: DOI arXiv


[1] Andersen, T. G., Benzoni, L. and Lund, J. (2002). An empirical investigation of continuous-time equity return models. J. Finance 3 1239-1284.
[2] Baillie, R., Bollerslev, T. and Mikkelsen, H. (1996). Fractionally integrated generalized autoregressive conditional heteroskedasticity. J. Econometrics 74 3-30. · Zbl 0865.62085
[3] BIS (1996). Supervisory framework for the use of “backtesting” in conjunction with the internal models approach to market risk capital requirements. Basel Commitee on Banking Supervision.
[4] Bollerslev, T. (1986). Generalised autoregressive conditional heteroskedasticity. J. Econometrics 31 307-327. · Zbl 0865.62085
[5] Brodskij, B. and Darkhovskij, B. (1993). Nonparametric Methods in Change Point Problems. Mathematics and its Applications . Kluwer, Dordrecht. · Zbl 0779.62031
[6] Chen, Y. and Spokoiny, V. (2007). Robust risk management. Accounting for nonstationarity and heavy tails. Preprint No. 1207, WIAS, Berlin.
[7] Cheng, M. Y., Fan, J. and Spokoiny, V. (2003). Dynamic nonparametric filtering with application to volatility estimation. In Recent Advances and Trends in Nonparametric Statistics (M. Acritas and D. Politis, eds.) 315-333. Elsevier, Amsterdam.
[8] Csorgő, M. and Horváth, L. (1997). Limit Theorems in Change-Point Analysis . Wiley, Chichester. · Zbl 0884.62023
[9] Dahlhaus, R. and Rao, S. S. (2006). Statistical inference of time-varying ARCH processes. Ann. Statist. 34 1075-1114. · Zbl 1113.62099
[10] Deutsch, H. P. (2001). Derivate und Interne Modelle , 2nd ed. Schäffer-Poeschel Verlag, Stuttgart.
[11] Duffie, D., Pan, J. and Singleton, K. (2000). Transform analysis and asset pricing for affine jump diffusions. Econometrica 68 1343-1376. JSTOR: · Zbl 1055.91524
[12] Eberlein, E. and Prause, K. (2002). The generalized hyperbolic model: Financial derivatives and risk measures. In Mathematical Finance-Bachelier Congress 2000 (H. Geman, D. Madan, S. Pliska and T. Vorst, eds.) 245-267. Springer, Berlin. · Zbl 0996.91067
[13] Engle, R. (1982). Autoregressive conditional heteroskedasticity with estimates of the variance of U.K. inflation. Econometrica 50 987-1008. JSTOR: · Zbl 0491.62099
[14] Engle, R. F., ed. (1995). ARCH , Selected Readings . Oxford Univ. Press, Oxford.
[15] Engle, R. F. and Bollerslev, T. (1986). Modeling the persistence of conditional variances. Econometric Rev. 5 1-50, 81-87. · Zbl 0619.62105
[16] Fan, J., Farmen, M. and Gijbels, I. (1998). Local maximum likelihood estimation and inference. J. R. Stat. Soc. Ser. B Stat. Methodol. 60 591-608. JSTOR: · Zbl 0909.62036
[17] Fan, J. and Gu, J. (2003). Semiparametric estimation of Value at Risk. J. Econometrics 6 260-289. · Zbl 1065.91535
[18] Giacomini, E., Härdle, W. and Spokoiny, V. (2007). Inhomogeneous dependency modeling with time varying copulae. J. Bus. Econom. Statist.
[19] Gouriéroux, C. (1997). ARCH Models and Financial Application . Springer, Berlin. · Zbl 0880.62107
[20] Grama, I. and Spokoiny, V. (2008). Statistics of extremes by oracle estimation. Ann. Statist. 36 1619-1648. · Zbl 1282.62131
[21] Hart, J. D. (1997). Nonparametric Smoothing and Lack-of-fit Tests . Springer, New York. · Zbl 0886.62043
[22] Horowitz, J. L. and Spokoiny, V. G. (2001). An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative. Econometrica 69 599-631. JSTOR: · Zbl 1017.62012
[23] Härdle, W., Herwartz, H. and Spokoiny, V. (2003). Time inhomogeous multiple volatility modeling. J. Financial Econometrics 1 55-95.
[24] Ingster, Yu. I. (1986). A minimax test of nonparametric hypotheses on the density of a distribution in L p metrics. Teor. Veroyatnost. i Primenen. 31 384-389. · Zbl 0629.62049
[25] Kitagawa, G. (1987). Non-Gaussian state-space modeling of nonstationary time series. J. Amer. Statist. Assoc. 82 1032-1063. JSTOR: · Zbl 0644.62088
[26] Lepski, O. V. (1990). A problem of adaptive estimation in Gaussian white noise. Teor. Veroyatnost. i Primenen. 35 459-470. · Zbl 0725.62075
[27] Lepski, O. V., Mammen, E. and Spokoiny, V. G. (1997). Optimal spatial adaptation to inhomogeneous smoothness: An approach based on kernel estimates with variable bandwidth selectors. Ann. Statist. 25 929-947. · Zbl 0885.62044
[28] McNeil, A. J. and Frey, R. (2000). Estimation of tail-related risk measures for heteroskedastic financial time series: An extreme value approach. J. Empirical Finance 7 271-300.
[29] Mercurio, D. and Spokoiny, V. (2004). Statistical inference for time-inhomogeneous volatility models. Ann. Statist. 32 577-602. · Zbl 1091.62103
[30] Mercurio, D. and Torricelli, C. (2003). Estimation and arbitrage opportunities for exchange rate baskets. Applied Econometrics 35 1689-1698.
[31] Mikosch, T. and Starica, C. (2000a). Change of structure in financial time series, long range dependence and the garch model. Discussion Paper Nr. 58, Aarhus school of Business, Univ. Aarhus.
[32] Mikosch, T. and Starica, C. (2000b). Is it really long memory we see in financial returns? In Extremes and Integrated Risk Management (P. Embrechts, ed.). Risk Books. UBS Warburg.
[33] Pollak, M. (1985). Optimal detection of a change in distribution. Ann. Statist. 13 206-227. · Zbl 0573.62074
[34] Polzehl, J. and Spokoiny, V. (2006). Propagation-separation approach for local likelihood estimation. Probab. Theory Related Fields 135 335-362. · Zbl 1089.62033
[35] Spokoiny, V. (2008). Local Parametric Estimation . Springer, Berlin. · Zbl 1282.62131
[36] Čížek, P., Härdle, W. and Spokoiny, V. (2007). Adaptive pointwise estimation in time-inhomogeneous time-series models. Unpublished manuscript. · Zbl 1231.91484
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.