Statistical analysis of stellar evolution. (English) Zbl 1160.62098

Summary: Color-Magnitude Diagrams (CMDs) are plots that compare the magnitudes (luminosities) of stars in different wavelengths of light (colors). High nonlinear correlations among the mass, color, and surface temperature of newly formed stars induce a long narrow curved point cloud in a CMD known as the main sequence. Aging stars form new CMD groups of red giants and white dwarfs.
The physical processes that govern this evolution can be described with mathematical models and explored using complex computer models. These calculations are designed to predict the plotted magnitudes as a function of parameters of scientific interest, such as stellar age, mass, and metallicity. We describe how we use the computer models as a component of a complex likelihood function in a Bayesian analysis that requires sophisticated computing, corrects for contamination of the data by field stars, accounts for complications caused by unresolved binary-star systems, and aims to compare competing physics-based computer models of stellar evolution.


62P35 Applications of statistics to physics
85A15 Galactic and stellar structure
85A35 Statistical astronomy
62F15 Bayesian inference
85A05 Galactic and stellar dynamics
65C40 Numerical analysis or methods applied to Markov chains
Full Text: DOI arXiv


[1] Bergeron, P., Wesemael, F. and Beauchamp, A. (1995). Photometric calibration of hydrogen- and helium-rich white dwarf models. Publications of the Astronomical Society of the Pacific 107 1047-1054.
[2] Caputo, F., Chieffi, A., Castellani, V., Collados, M., Roger, C. M. and Paez, E. (1990). CCD photometry of stars in the old open cluster NGC 188. Astronom. J. 99 261-272.
[3] Chaboyer, B., Demarque, P. and Sarajedini, A. (1996). Globular cluster ages and the formation of the galactic Halo. Astrophys. J. 459 558-569.
[4] Cignoni, M., Degl’Innocenti, S., Prada Moroni, P. G. and Shore, S. N. (2006). Recovering the star formation rate in the solar neighborhood. Astronom. Astrophys. 459 783-796.
[5] DeGennaro, S., von Hippel, T., Jefferys, W. H., Stein, N., van Dyk, D. A. and Jeffery, E. (2008). Inverting color-magnitude diagrams to access precise cluster parameters: A new white dwarf age for the Hyades. Astrophys. J.
[6] Dinescu, D. I., Demarque, P., Guenther, D. B. and Pinsonneault, M. H. (1995). The ages of the disk clusters NGC 188, M67, and NGC 752, using improved opacities and cluster membership data. Astronom. J. 109 2090-2095.
[7] Dotter, A., Chaboyer, B., Jevremovic, D., Kostov, V., Baron, E. and Ferguson, J. W. (2008). The Dartmouth stellar evolution database. Astrophys. J. Suppl. 178 89-101.
[8] Gallart, C., Freedman, W. L., Aparicio, A., Bertelli, G. and Chiosi, C. (1999). The star formation history of the local group dwarf galaxy Leo I. Astronom. J. 118 2245-2261.
[9] Girardi, L., Bressan, A., Bertelli, G. and Chiosi, C. (2000). Low-mass stars evolutionary tracks & isochrones (Girardi+, 2000). VizieR Online Data Catalog 414 10371-+.
[10] Hernandez, X. and Valls-Gabaud, D. (2008). A robust statistical estimation of the basic parameters of single stellar populations-I. Method. Monthly Notices of the Royal Astronomical Society 383 1603-1618.
[11] Jeffery, E. J., von Hippel, T., Jefferys, W. H., Winget, D. E., Stein, N. and DeGennaro, S. (2007). New techniques to determine ages of open clusters using white dwarfs. Astrophys. J. 658 391-395.
[12] Miller, G. E. and Scalo, J. M. (1979). The initial mass function and stellar birthrate in the solar neighborhood. Astrophys. J. Suppl. 41 513-547.
[13] Montgomery, K. A., Marschall, L. A. and Janes, K. A. (1993). CCD photometry of the old open cluster M67. Astronom. J. 106 181-219.
[14] Perryman, M. A. C., Brown, A. G. A., Lebreton, Y., Gomez, A., Turon, C., de Strobel, G. C., Mermilliod, J. C., Robichon, N., Kovalevsky, J. and Crifo, F. (1998). The Hyades: Distance, structure, dynamics, and age. Astronom. Astrophys. 331 81-120.
[15] Peterson, D. M. and Solensky, R. (1988). 51 Tauri and the Hyades distance modulus. Astrophys. J. 333 256-266.
[16] Rosvick, J. M. and Vandenberg, D. A. (1998). BV photometry for the \~2.5 Gyr open cluster NGC 6819: More evidence for convective core overshooting on the main sequence. Astronom. J. 115 1516-1523.
[17] Sarajedini, A., von Hippel, T., Kozhurina-Platais, V. and Demarque, P. (1999). WIYN open cluster study. II. UBVRI CCD photometry of the open cluster NGC 188. Astronom. J. 118 2894-2907.
[18] Taylor, B. J. and Joner, M. D. (2005). A catalog of temperatures and red cousins photometry for the Hyades. Astrophys. J. Suppl. 159 100-117.
[19] Tosi, M., Bragaglia, A. and Cignoni, M. (2007). The old open clusters Berkeley 32 and King 11. Monthly Notices of the Royal Astronomical Society 378 730-740.
[20] Tosi, M., Greggio, L., Marconi, G. and Focardi, P. (1991). Star formation in dwarf irregular galaxies-Sextans B. Astronom. J. 102 951-974.
[21] van Dyk, D. A., DeGennaro, S., Stein, N., Jefferys, W. H. and von Hippel, T. (2009). Supplement to “Statistical analysis of stellar evolution.” DOI: 10.1214/08-AOAS219SUPP. · Zbl 1160.62098
[22] VandenBerg, D. A. and Stetson, P. B. (2004). On the old open clusters M67 and NGC 188: Convective core overshooting, color-temperature relations, distances, and ages. Publications of the Astronomical Society of the Pacific 116 997-1011.
[23] von Hippel, T., Jefferys, W. H., Scott, J., Stein, N., Winget, D. E., DeGennaro, S., Dam, A. and Jeffery, E. (2006). Inverting color-magnitude diagrams to access precise star cluster parameters: A Bayesian approach. Astrophys. J. 645 1436-1447.
[24] Weidemann, V. (2000). Revision of the initial-to-final mass relation. Astronom. Astrophys. 363 647-656.
[25] Weidemann, V., Jordan, S., Iben, I. J. and Casertano, S. (1992). White dwarfs in the Halo of the Hyades cluster-the case of the missing white dwarfs. Astronom. J. 104 1876-1891.
[26] Wood, M. A. (1992). Constraints on the age and evolution of the Galaxy from the white dwarf luminosity function. Astrophys. J. 386 539-561.
[27] Yi, S., Demarque, P., Kim, Y.-C., Lee, Y.-W., Ree, C. H., Lejeune, T. and Barnes, S. (2001). Toward better age estimates for stellar populations: The Y 2 isochrones for solar mixture. Astrophys. J. Suppl. 136 417-437.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.