Is there a Jordan geometry underlying quantum physics? (English) Zbl 1160.81398

Summary: There have been several propositions for a geometric and essentially non-linear formulation of quantum mechanics, see, e.g., [A. Ashtekar and T. A. Schilling, in Alex Harvey (ed.) On Einstein’s Path, Springer, Berlin, essays in honor of Engelbert Schücking. A Symposium, New York Univ., New York, NY, USA, December 12–13 1996. New York, NY: Springer. 23–55 (1999; Zbl 0976.53088); D. C. Brody and L. P. Hughston, J. Geom. Phys. 38, No. 1, 19–53, (2001; Zbl 1067.81081( R. Cirelli, M. Gatti and A. Manià, J. Geom. Phys. 45, No. 3–4, 267–284, (2003; Zbl 1032.81021); T. W. B. Kibble, Commun. Math. Phys. 65, 189–201, 1979; Zbl 0412.58006)]. From a purely mathematical side, the point of view of Jordan algebra theory might give new strength to such approaches: there is a “Jordan geometry” belonging to the Jordan part of the algebra of observables, in the same way as Lie groups belong to the Lie part. Both the Lie geometry and the Jordan geometry are well-adapted to describe certain features of quantum theory. We concentrate here on the mathematical description of the Jordan geometry and raise some questions concerning possible relations with foundational issues of quantum theory.


81R25 Spinor and twistor methods applied to problems in quantum theory
81R15 Operator algebra methods applied to problems in quantum theory
17A15 Noncommutative Jordan algebras
81P05 General and philosophical questions in quantum theory
22E70 Applications of Lie groups to the sciences; explicit representations
Full Text: DOI arXiv


[1] Alfsen, E., Schultz, F.W.: State Spaces of Operator Algebras. Birkhäuser, Boston (2001) · Zbl 0397.46066
[2] Ashtekar, A., Schilling, T.A.: Geometrical formulation of quantum mechanics. In: Harvey, A. (ed.) On Einstein’s Path. Springer, Berlin (1998) gr-qc/9706069
[3] Baston, R.J., Eastwood, M.G.: The Penrose Transform–Its Interaction with Representation Theory. Clarendon Press, Oxford (1989) · Zbl 0726.58004
[4] Bell, J.S.: Speakable and Unspeakable in Quantum Mechanics, 2nd edn. Cambridge University Press, Cambridge (2004) · Zbl 1239.81002
[5] Bertram, W.: The Geometry of Jordan- and Lie Structures. Springer Lecture Notes in Mathematics, vol. 1754. Springer, Berlin (2000) · Zbl 1014.17024
[6] Bertram, W.: Generalized projective geometries: general theory and equivalence with Jordan structures. Adv. Geom. 2, 329–369 (2002) (electronic version: preprint 90 at http://homepage.uibk.ac.at/\(\sim\)c70202/jordan/index.html ) · Zbl 1035.17043
[7] Bertram, W.: The geometry of null systems, Jordan algebras and von Staudt’s Theorem. Ann. Inst. Fourier 53(fasc. 1), 193–225 (2003) · Zbl 1038.17023
[8] Bertram, W.: From linear algebra via affine algebra to projective algebra. Linear Algebra Appl. 378, 109–134 (2004) · Zbl 1063.17020
[9] Bertram, W.: Differential geometry, Lie groups and symmetric spaces over general base fields and rings. Memoirs AMS 192(900) (2008) arXiv: math.DG/0502168 · Zbl 1144.58002
[10] Bertram, W.: Jordan structures and non-associative geometry. In: Trends and Developments in Infinite Dimensional Lie Theory. Progress in Math. Birkhaeuser, Boston (2008) (to appear) arXiv: math.RA/0706.1406
[11] Bertram, W., Didry, M.: Symmetric bundles and representations of Lie triple systems. arXiv: math.DG/0710.1543 · Zbl 1239.17001
[12] Bertram, W., Löwe, H.: Inner ideals and intrinsic subspaces. Adv. Geom. 8, 53–85 (2008) math.RA/0606448 · Zbl 1217.17019
[13] Bertram, W., Neeb, K.-H.: Projective completions of Jordan pairs. I: The generalized projective geometry of a Lie algebra. J. Algebra 277(2), 193–225 (2004) math.RA/0306272 · Zbl 1100.17012
[14] Bertram, W., Neeb, K.-H.: Projective completions of Jordan pairs. II: Manifold structures and symmetric spaces. Geom. Ded. 112, 73–113 (2005) math.GR/0401236 · Zbl 1101.17019
[15] Bertram, W., Glöckner, H., Neeb, K.-H.: Differential calculus over general base fields and rings. Expos. Math. 22, 213–282 (2004) math.GM/0303300 · Zbl 1099.58006
[16] Brody, D.C., Hughston, L.P.: Geometric quantum mechanics. J. Geom. Phys. 38, 19–53 (2001) quant-ph/9906086 · Zbl 1067.81081
[17] Buekenhout, F. (ed.): Handbook of Incidence Geometry. Elsevier, Amsterdam (1995) · Zbl 0821.00012
[18] Castell, L., Drieschner, M., von Weizsäcker, C.F.: Quantum Theory and the Structure of Space and Time. II. Hanser, München (1977)
[19] Cirelli, R., Gatti, M., Manià, A.: The pure state space of quantum mechanics as Hermitian symmetric space. J. Geom. Phys. 45, 267–284 (2003) · Zbl 1032.81021
[20] Didry, M.: Structures algébriques sur les espaces symétriques. Thesis, Nancy (2006). Available at http://www.iecn.u-nancy.fr/\(\sim\)didrym/
[21] Faulkner, J.R.: Incidence geometry of Lie groups in quantum theory, group theoretical methods in physics (Proc. Eighth Internat. Colloq., Kiryat Anavim, 1979). Ann. Israel Phys. Soc. 3, 73–79 (1980)
[22] Friedman, Y.: Physical Applications of Homogeneous Balls. With the assistance of Tzvi Scarr. Progress in Mathematical Physics, vol. 40. Birkhäuser, Boston (2005) · Zbl 1080.46001
[23] Helgason, S.: Differential Geometry, Lie Groups and Symmetric Spaces. Academic Press, San Diego (1978) · Zbl 0451.53038
[24] Iordanescu, R.: Jordan Structures in Geometry and Physics. Editura Academiei Române, Bucharest (2003)
[25] Jordan, P.: Über eine Klasse nichtassoziativer hyperkomplexer Algebren. Nachr. d. Akad. der Wiss. Göttingen 569–574 (1932) · JFM 58.0135.02
[26] Jordan, P.: Über Verallgemeinerungsmöglichkeiten des Formalismus der Quantenmechanik. Nachr. d. Akad. der Wiss. Göttingen 209–217 (1933) · Zbl 0007.08502
[27] Jordan, P., von Neumann, J., Wigner, E.: On an algebraic generalization of the quantum mechanical formalism. Ann. Math. 35, 29–64 (1934) · JFM 60.0902.02
[28] Kaup, W.: Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension I. Math. Ann. 257, 463–486 (1981) · Zbl 0482.32010
[29] Kaup, W.: Über die Klassifikation der symmetrischen hermiteschen Mannigfaltigkeiten unendlicher Dimension II. Math. Ann. 262, 57–75 (1983) · Zbl 0504.32026
[30] Kibble, T.W.B.: Geometrization of quantum mechanics. Commun. Math. Phys. 65, 189–201 (1979) · Zbl 0412.58006
[31] Loos, O.: Symmetric Spaces I. Benjamin, New York (1969) · Zbl 0175.48601
[32] Loos, O.: Jordan Pairs. Springer Lecture Notes, vol. 460. Springer, New York (1975) · Zbl 0301.17003
[33] Loos, O.: Diagonalization in Jordan Pairs. J. Algebra 143(1), 252–268 (1991) · Zbl 0753.17041
[34] McCrimmon, K.: A Taste of Jordan Algebras. Springer, New York (1994) · Zbl 1044.17001
[35] Nesterov, A.I., Sabinin, L.V.: Non-associative geometry and discrete structure of spacetime. Commun. Math. Univ. Carolina 41(2), 347–357 (2000) · Zbl 1036.53010
[36] Omnès, R.: The Interpretation of Quantum Mechanics. Princeton University Press, Princeton (1994) · Zbl 0848.46047
[37] Penrose, R.: The Emporer’s New Mind. Oxford University Press, London (1989)
[38] Penrose, R.: The Road to Reality–A Complete Guide to the Laws of the Universe. Alfred A. Knopf, New York (2005) · Zbl 1188.00007
[39] Sharpe, R.W.: Differential Geometry–Cartan’s Generalization of Klein’s Erlangen Program. Springer, New York (1997) · Zbl 0876.53001
[40] Upmeier, H.: Symmetric Banach Manifolds and Jordan C *-Algebras. North Holland Mathematics Studies, Amsterdam (1985) · Zbl 0561.46032
[41] Upmeier, H.: Jordan Algebras in Analysis, Operator Theory and Quantum Mechanics. AMS Regional Conference Series in Mathematics, vol. 67. Am. Math. Soc., Providence (1987) · Zbl 0617.47020
[42] Varadarajan, V.S.: Geometry of Quantum Theory. Springer, New York (1985) · Zbl 0581.46061
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.