zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Two limit cycles in a Leslie-Gower predator-prey model with additive Allee effect. (English) Zbl 1160.92038
Summary: A bidimensional continuous-time differential equations system is analyzed which is derived from Leslie type predator-prey schemes by considering a nonmonotonic functional response and Allee effects on the prey population. For ecological reason, we describe the bifurcation diagram of limit cycles that appear only at the first quadrant in the system obtained. We also show that under certain conditions on the parameters the system allows the existence of a stable limit cycle surrounding an unstable limit cycle generated by Hopf bifurcations. Furthermore, we give conditions on the parameters such that the model allows long-term extinction or survival of both populations.

MSC:
92D40Ecology
34C05Location of integral curves, singular points, limit cycles (ODE)
34C23Bifurcation (ODE)
Software:
Mathematica
WorldCat.org
Full Text: DOI
References:
[1] A. Andronov, E. Leontovich, I. Gordon, A. Maier, Theory of bifurcations of dynamical systems on a plane, in: Israel program for Sci. Trans., Jerusalem, 1971
[2] Arrowsmith, D.; Place, C.: An introduction to dynamical systems. (1990) · Zbl 0702.58002
[3] Arrowsmith, D. K.; Place, C. M.: Dynamical systems. Differential equations, maps and chaotic behaviour. (1992) · Zbl 0754.34001
[4] Bascompte, J.: Extinction thresholds: insights from simple models. Annales zoologici fennici 40, 99-114 (2003)
[5] Berec, L.; Angulo, E.; Courchamp, F.: Multiple allee effects and population management. Trends in ecology and evolution 22, 185-191 (2007)
[6] Blows, T. R.; Lloyd, N. G.: The number of lymit cycles of certain polynomial differential equations. Proceedings of the royal society of edimburgh series A 98, 215-239 (1984) · Zbl 0603.34020
[7] Clark, C. W.: Mathematical bioeconomic. The optimal management of renewable resources. (1990) · Zbl 0712.90018
[8] Collings, J. B.: Bifurcation and stability analysis of a temperature-dependent mite predator--prey interaction model incorporating a prey refuge. Bullettin of mathematical biology 57, 63-76 (1995) · Zbl 0810.92024
[9] Courchamp, F.; Clutton-Brock, T.; Grenfell, B.: Inverse dependence and the allee effect. Trends in ecology and evolution 14, No. 10, 405-410 (1999)
[10] De Roos, A. M.; Persson, L.: Size-dependent life-history traits promote catastrophic collapses of top predators. Pnas 99, No. 20, 12907-12912 (2002)
[11] Dennis, B.: Allee effects: population growth, critical density and the chance of extinction. Natural resource modelling 3, No. 4, 481-538 (1989) · Zbl 0850.92062
[12] Dumortier, F.: Singularities of vector fields. Monograf. mat. 32 (1978) · Zbl 0346.58002
[13] Flores, J. D.; Mena-Lorca, J.; González-Yañez, B.; Lez-Olivares, E. Gonzá: Consequences of depensation in a Smith’s bioeconomic model for open-access fishery. Proceedings of the 2006 international symposium on mathematical and computational biology BIOMAT 2006, 219-232 (2007)
[14] Freedman, H. I.; Wolkowicz, G. S. K.: Predator--prey systems with group defence: the paradox of enrichment revisted. Bulletin of mathematical biology 8, 493-508 (1986) · Zbl 0612.92017
[15] Gascoigne, J.; Lipcius, R. N.: Allee effects in marine systems. Marine ecology progress series 269, 49-59 (2004)
[16] Guckenheimer, J.; Holmes, P.: Nonlinear oscillations, dynamical systems, and bifurcations of vector fields. (1983) · Zbl 0515.34001
[17] Hanski, I.; Hansson, L.; Henttonen, H.: Specialist predators, generalist predators and the microtine rodent cycle. Journal of animal ecology 60, 353-367 (1991)
[18] Hanski, I.; Hentonnen, H.; Korpimaki, E.; Oksanen, L.; Turchin, P.: Small-rodent dynamics and predation. Ecology 82, 1505-1520 (2001)
[19] Li, Y.; Xiao, D.: Bifurcations of a predator--prey system of Holling and Leslie types. Chaos, solitons and fractals 34, 606-620 (2007) · Zbl 1156.34029
[20] Korobeinikov, A.: A Lyapunov function for Leslie--gower predator--prey models. Applied mathematical letters 14, 697-699 (2001) · Zbl 0999.92036
[21] May, R. M.: Stability and complexity in model ecosystems. (2001) · Zbl 1044.92047
[22] Mena-Lorca, J.; González-Olivares, E.; González-Yañez, B.: The Leslie--gower predator--prey model with allee effect on prey: A simple model with a rich and interesting dynamics. Proceedings of the 2006 international symposium on mathematical and computational biology BIOMAT 2006, 105-132 (2007)
[23] Ruan, S.; Xiao, D.: Global analysis in a predator--prey system with nonmonotonic functional response. SIAM journal on applied mathematics 61, 1445-1472 (2001) · Zbl 0986.34045
[24] Stephens, P. A.; Sutherland, W. J.: Consequences of the allee effect for behaviour, ecology and conservation. Trends in ecology and evolution 14, No. 10, 401-405 (1999)
[25] Takens, F.: Unfoldings of certain singularities of vector fields: generalized Hopf bifurcations. Journal of differential equations 14, 476-493 (1973) · Zbl 0273.35009
[26] Taylor, R. J.: Predation. (1984)
[27] Turchin, P.: Complex population dynamics. A theoretical/empirical synthesis. Mongraphs in population biology 35 (2003) · Zbl 1062.92077
[28] Wang, X.; Liang, G.; Wang, F-Z.: The competitive dynamics of populations subject to an allee effect. Ecological modelling 124, No. 2--3, 183-192 (1999)
[29] Wolkowicz, G. S. W.: Bifurcation analysis of a predator--prey system involving group defense. SIAM journal on applied mathematics 48, 592-606 (1988) · Zbl 0657.92015
[30] Wolfram Research, Mathematica: A system for doing mathematics by computer, 1988 · Zbl 0671.65002
[31] Xiao, D.; Ruan, S.: Bifurcations in a predator--prey system with group defense. International journal of bifurcation and chaos 11, 2123-2131 (2001) · Zbl 1091.92504
[32] Xiao, D.; Zhu, H.: Multiple focus and Hopf bifurcations in a predator--prey system with nonmonotonic functional response. SIAM journal on applied mathematics 66, 802-820 (2006) · Zbl 1109.34034
[33] Xiao, D.; Zhang, K. F.: Multiple bifurcations of a predator--prey system. Discrete and continuous dynamical system, series B 8, 417-433 (2007) · Zbl 1142.34032
[34] Zhu, H.; Campbell, S. A.; Wolkowicz, G. S. K.: Bifurcation analysis of a predator--prey system with nonmonotonic functional response. SIAM journal on applied mathematics 63, 636-682 (2002) · Zbl 1036.34049