zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive control of a hysteresis cellular neural network model. (English) Zbl 1160.92300
Summary: A receptor-based cellular nonlinear network (CNN) model with hysteresis is considered. Dynamics and stability of the CNN model are studied from the point of view of local activity theory. The edge of chaos domain of the parameter space is found for the model. Numerical simulations and discussions about the pattern formation in such models are presented. Impulsive feedback control is applied in order to stabilize the system.

92B20General theory of neural networks (mathematical biology)
93D15Stabilization of systems by feedback
35K57Reaction-diffusion equations
37N25Dynamical systems in biology
37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Hoppensteadt, F.; Jäger, W.: Pattern formation by bacteria. Lecture notes in biomathematics: biological growth and spread, 69-81 (1980)
[2] S. Heinze, B. Schweizer, Creeping fronts in degenerate reaction-diffusion systems (in press) · Zbl 1083.35047
[3] Britton, N. F.: Reaction-diffusion equations and their applications to biology. (1986) · Zbl 0602.92001
[4] A. Slavova, M. Markova, Receptor-based CNN Model with Hysteresis for Pattern Formatbelion, in: Proc. IEEE, CNNA 2006, 2006, pp. 241--244
[5] Chua, L. O.: CNN: A paradigm for complexity. World scientific series on nonlinear science, series A 31 (1988)
[6] Chua, L. O.; Yang, L.: Cellular neural network: theory and applications. IEEE trans. CAS 35, 1257-1290 (1988) · Zbl 0663.94022
[7] Chua, L. O.; Hasler, M.; Moschytz, G. S.; Neirynsk, J.: Autonomous cellular neural networks: A unified paradigm for pattern formation and active wave propagation. IEEE trans. CAS-I 42, No. 10, 559-577 (1995)
[8] Roska, T.; Chua, L. O.; Wolf, D.; Kozek, T.; Tetzlaff, R.; Puffer, F.: Simulating nonlinear waves and partial differential equations via CNN- part I: Basic techniques. IEEE trans. CAS-I 42, No. 10, 807-815 (1995)
[9] Chua, L. O.: Local activity in the origin of complexity. Internat J. Biffur. chaos (2005) · Zbl 1097.37058
[10] Lakshmikantham, V.; Bainov, D. D.; Simeonov, P. S.: Theory of impulsive differential equations. Series in modern applied mathematics (1989) · Zbl 0719.34002
[11] Agranovich, Grigory: Some problems of discrete/continuous systems stabilizabeltion. Funct. differ. Equ. 10, No. 1--2, 5-17 (2003) · Zbl 1175.93185
[12] Ogata, Katsuhiko: Discrete-time control systems. (1995)
[13] Macki, J.; Nistri, P.; Zecca, P.: Mathematical models for hysteresis. SIAM rev. 53, No. 1, 94-123 (1993) · Zbl 0771.34018
[14] Turing, A. M.: The chemical basis of morphogenesis. Philos. trans. R. soc. B 237, 37-72 (1952)