×

\(D\)-decomposition technique state-of-the-art. (English. Russian original) Zbl 1160.93003

Autom. Remote Control 69, No. 12, 1991-2026 (2008); translation from Avtom. Telemekh. 2008, No. 12, 3-40 (2008).
Summary: It is a survey of recent extensions and new applications for the classical \(D\)-decomposition technique. We investigate the structure of the parameter space decomposition into root invariant regions for single-input single-output systems linear depending on the parameters. The \(D\)-decomposition for uncertain polynomials is considered as well as the problem of describing all stabilizing controllers of the certain structure (for instance, PID-controllers) that satisfy given \(H _{\infty }\)-criterion. It is shown that the \(D\)-decomposition technique can be naturally linked with \(M-\Delta \) framework (a general scheme for analysis of uncertain systems) and it is applicable for describing feasible sets for linear matrix inequalities. The problem of robust synthesis for linear systems can be also treated via \(D\)-decomposition technique.

MSC:

93-02 Research exposition (monographs, survey articles) pertaining to systems and control theory
93B40 Computational methods in systems theory (MSC2010)
93C05 Linear systems in control theory
65F05 Direct numerical methods for linear systems and matrix inversion
93B50 Synthesis problems

Software:

YALMIP
Full Text: DOI

References:

[1] Andronov, A.A. and Mayer, A.G., Simple Linear Systems with Delay, Avtom. Telemekh., 1946, no. 7, pp. 95–106.
[2] Balandin, D.V. and Kogan, M.M., Sintez zakonov upravleniya na osnove lineinykh matrichnykh neravenstv (Synthesis of Control Laws Based on Linear Matrix Inequalities), Moscow: Fizmatlit, 2007. · Zbl 1124.93001
[3] Bendrikov, G.A. and Teodorchik, K.F., Traektorii kornei lineinykh avtomaticheskikh sistem (Root Trajectories of Linear Automation Systems), Moscow: Nauka, 1964. · Zbl 0119.07204
[4] Borovkov, K.A., On a New Variant of the Monte Carlo Method, Teor. Veroyatn. Primen., 1991, vol. 36, no 2, pp. 342–346. · Zbl 0749.65089
[5] Horowitz, I., Sintez system s obratnoi svyaz’yu (Synthesis of Feedback Systems), Moscow: Sovetskoe Radio, 1970.
[6] Gryazina, E.N., On the D-decomposition Theory, Avtom. Telemekh., 2004, no. 12, pp. 15–28. · Zbl 1082.93040
[7] Gryazina, E.N., Polyak, B.T., and Tremba, A.A., Design of the Low-Order Controllers by the H Criterion: A Parametric Approach, Avtom. Telemekh., 2007, no. 3, pp. 93–105. · Zbl 1125.93343
[8] Gryazina, E.N. and Polyak, B.T., Multidimensional Stability Domain of Special Polynomial Families, Avtom. Telemekh., 2007, no. 12, pp. 38–52. · Zbl 1146.93373
[9] Jury, E.I., Innory i ustoichivost’ (Innors and Dynamical System Stability), Moscow: Nauka, 1979.
[10] Jury, E.I., Robustness of Discrete-Time Systems, Avtom. Telemekh., 1990, no. 5, pp. 3–28.
[11] Kiselev, O.N. and Polyak, B.T., Design of the Low-Order Controllers by the H Criterion, Avtom. Telemekh., 1999, no. 3, pp. 119–130.
[12] Luzin, N.N., Differentsial’noe ischislenie (Differential Calculus), Moscow: Vysshaya Shkola, 1960.
[13] Neimark, Yu.I., Search for the Parameter Values That Make Automatic Control System Stable, Avtom. Telemekh., 1948, vol. 9, no. 3, pp. 190–203.
[14] Neimark, Yu.I., Ustoichivost’ linearizovannykh system (Stability of the Linearized Systems), Leningrad: LKVVIA, 1949.
[15] Neimark, Yu.I., Robastnaya ustoichivost’ i D-razbienie (Robust Stability and D-partition), Avtom. Telemekh., 1992, no. 7, pp. 10–18.
[16] Nesenchuk, A.A., Analiz i sintez robastnykh dinamicheskikh sistem na osnove kornevogo godografa (Analysis and Synthesis of the Robust Dynamical Systems Based on Root Approach), Minsk: OIPI NAN Belarusi, 2005.
[17] Nikolayev, Y.P., The Multidimensional Asymptotic Stability Domain of Linear Discrete Systems: Its Symmetry and Other Properties, Avtom. Telemekh., 2001, no. 11, pp. 109–120.
[18] Nikolayev, Y.P., The Set of Stable Polynomials of Linear Discrete Systems: Its Geometry, Avtom. Telemekh., 2002, no. 7, pp. 44–54.
[19] Nikolayev, Y.P., The Geometry of D-Decomposition of a Two-Dimensional Plane of Arbitrary Coefficients of the Characteristic Polynomial of a Discrete System, Avtom. Telemekh., 2004, no. 12, pp. 49–61.
[20] Petrov, N.P. and Polyak, B.T., Robust D-decomposition, Avtom. Telemekh., 1991, no. 11, pp. 41–53.
[21] Polyak, B.T. and Tsypkin, Ya.Z., Frequency Domain Criteria for Robust Stability and Aperiodicity of Continuous Linear Systems, Avtom. Telemekh., 1990, no. 9, pp. 45–54. · Zbl 0735.93058
[22] Polyak, B.T. and Tsypkin, Ya.Z., Robust Stability of Linear Discrete-Time Systems, Dokl. Akad. Nauk SSSR, 1991, vol. 316, no. 4, pp. 842–846.
[23] Polyak, B.T. and Tsypkin, Ya.Z., Robust Aperiodicity, Dokl. Akad. Nauk SSSR, 1994, vol. 335, no. 3, pp. 304–307.
[24] Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.
[25] Polyak, B.T. and Shcherbakov, P.S., The D-decomposition Technique for Linear Matrix Inequalities, Avtom. Telemekh., 2006, no. 11, pp. 159–174. · Zbl 1195.93044
[26] Polyak, B.T. and Shcherbakov, P.S., Randomized Method for Semidefinite Programming, in Stochastic Optimization in Informatics, Granichin, O.N., Ed., St. Petersburg: S.-Peterburg. Gos. Univ., 2006, pp. 38–70.
[27] Sokolov, A.A., A Criterion of Stability for Linear Regulated Systems with Distributed Parameters, in Inzhenernyi sbornik (Engineering Collection), Talitskikh, N.A., Ed., Leningrad: Akad. Nauk SSSR, 1946, vol. II, no. 2, pp. 3–26.
[28] Tremba, A.A., Robust D-decomposition under l p-bounded Parametric Uncertainties, Avtom. Telemekh., 2006, no. 12, pp. 21–36. · Zbl 1195.93116
[29] Turchin, V.F., On the Computation of Multidimensional Integrals by the Monte Carlo Method, Teor. Veroyatn. Primen., 1971, vol. XVI, no. 4, pp. 738–743.
[30] Kharitonov, V.L., Asymptotic Stability of a Family of Systems of Linear Differential Equations, Diff. Uravn., 1978, vol. 1, no. 11, pp. 2086–2088.
[31] Shcherbakov, P.S. and Khlebnikov, M.V., Petersen’s Lemma on Matrix Uncertainty and Its Generalizations, Avtom. Telemekh., 2008, no. 11, pp. 125–139. · Zbl 1163.93021
[32] Ackermann, J., Robust Control: The Parameter Space Approach, London: Springer, 2002.
[33] Ackermann, J. and Kaesbauer, D., Stable Polyhedra in Parameter Space, Automatica, 2003, vol. 39, pp. 937–943. · Zbl 1022.93016 · doi:10.1016/S0005-1098(03)00034-7
[34] Barmish, B. and Polyak, B.T., The Volumetric Singular Value and Robustness of Feedback Control Systems, Proc. 32nd CDC, San Antonio, 1993, TX, pp. 521–523.
[35] Barmish, B.R., New Tools for Robustness of Linear Systems, New York: MacMillan, 1995. · Zbl 1094.93517
[36] Ben-Tal, A. and Nemirovski, A., Lectures on Modern Convex Optimization: Analysis, Algorithms and Engineering Applications, Philadelphia: SIAM, 2001. · Zbl 0986.90032
[37] Ben-Tal, A. and Nemirovski, A., On Tractable Approximations of Uncertain Linear Matrix Inequalities Affected by Interval Uncertainty, SIAM J. Optim., 2002, vol. 12, no. 3, pp. 811–833. · Zbl 1008.90034 · doi:10.1137/S1052623400374756
[38] Bhattacharyya, S., Chapellat, H., and Keel L., Robust Control: The Parametric Approach, Upper Saddle River: Prentice Hall, 1995. · Zbl 0838.93008
[39] Bhattacharyya, S.P., Tantaris, R.N., and Keel, L.H., Stabilization of Discrete-Time Systems by First-Order Controllers, IEEE Trans. Automat. Control, 2003, vol. 48, no. 5, pp. 858–861. · Zbl 1364.93670 · doi:10.1109/TAC.2003.811268
[40] Blanchini, F., Lepschy, A., Miani, S., and Viaro, U., Characterization of PID and Lead/Lag Compensators Satisfying Given H Specifications, IEEE Trans. Automat. Control, 2004, vol. 49, no. 5, pp. 736–740. · Zbl 1365.93169 · doi:10.1109/TAC.2004.825961
[41] Boyd, S.P., El Ghaoui, L., Feron, E., and Balakrishnan, V., Linear Matrix Inequalities in System and Control Theory, Philadelphia: SIAM, 1994. · Zbl 0816.93004
[42] Calafiore, G., Random Walks for Probabilistic Robustness, Proc. 43rd Conf. Decision Control, Bahamas, 2004, pp. 5316–5321.
[43] Chen, J., Fan, M.K.H., and Nett, C.N., Structural Singular Value and Stability of Uncertain Polynomials. II, A Missing Link, Syst. Control Lett., 1994, vol. 23, no. 2, pp. 97–109. · Zbl 0826.93055 · doi:10.1016/0167-6911(94)90039-6
[44] Comets, F., Popov, S., Schütz, G.M., and Vachkovskaia, M., Billiards in a General Domain with Random Reflections, URL: arXiv:math/0612799v3 [math.PR].
[45] Dabbene, F., Polyak, B., and Tempo, R., On the Complete Instability of Interval Polynomials, Syst. Control Lett., 2007, vol. 56, pp. 431–438. · Zbl 1118.93042 · doi:10.1016/j.sysconle.2006.11.002
[46] Datta, A., Ho, M.T., and Bhattacharyya, S.P., Structure and Synthesis of PID Controllers, New York: Springer-Verlag, 2002. · Zbl 1092.93500
[47] Delansky, J.F. and Bose, N.K., Real and Complex Polynomial Stability and Stability Domain Construction via Network Realizability Theory, Int. J. Control, 1988, vol. 48, no. 3, pp. 1343–1349. · Zbl 0667.13003 · doi:10.1080/00207178808906250
[48] Delansky, J.F. and Bose, N.K., Schur Stability and Stability Domain Construction, Int. J. Control, 1989, vol. 49, no. 4, pp. 1175–1183. · Zbl 0681.93057 · doi:10.1080/00207178908559699
[49] Evans, W.R., Control System Dynamics, New York: McGraw-Hill, 1954.
[50] Francis, B., A Course in H Control Theory, Berlin: Springer, 1987. · Zbl 0624.93003
[51] Frazer, R.A. and Duncan, W.J., On the Criteria for Stability for Small Motions, Proc. Royal Soc., Ser.A, 1929, vol. 124, pp. 642–654. · JFM 55.0453.04 · doi:10.1098/rspa.1929.0143
[52] Fujisaki, Y., Oishi, Y., and Tempo, R., A Mixed Probabilistic/Deterministic Approach to Fixed Order H Controller Design, Proc. 45th CDC, 2006, pp. 3554–3559.
[53] Gryazina, E.N. and Polyak, B.T., Stability Regions in the Parameter Space: D-decomposition Revisited, Automatica, 2006, vol. 42, no. 1, pp. 13–26. · Zbl 1121.93028 · doi:10.1016/j.automatica.2005.08.010
[54] Güvenc, L. and Ackermann, J., Links between the Parameter Space and Frequency Domain Methods of Robust Control, Int. J. Robust Nonlinear Control, 2001, vol. 11, pp. 1435–1453. · Zbl 1054.93019 · doi:10.1002/rnc.668
[55] Hinrichsen, D. and Pritchard, A., Stability Radius for Structured Perturbations and the Algebraic Riccati Equation, Syst. Control Lett., 1986, vol. 8, pp. 105–113. · Zbl 0626.93054 · doi:10.1016/0167-6911(86)90068-X
[56] Ho, M.T., Synthesis of H PID Controllers: A Parametric Approach, Automatica, 2003, vol. 39, pp. 1069–1075. · Zbl 1035.93023 · doi:10.1016/S0005-1098(03)00078-5
[57] Ho, M.T., Datta, A., and Bhattacharyya, S.P., A New Approach to Feedback Stabilization, Proc. 35th CDC, 1996, pp. 4643–4648.
[58] Ho, M.T., Datta, A., and Bhattacharyya, S.P., An Elementary Derivation of the Routh Hurwitz Criterion, IEEE Trans. Automat. Control, 1998, vol. 43, no. 3, pp. 405–409. · Zbl 0917.93063 · doi:10.1109/9.661607
[59] Keel, L. and Bhattacharyya, S.P., Robust, Fragile or Optimal?, IEEE Trans. Automat. Control, 1997, vol. 42, no. 6, pp. 1098–1105. · Zbl 0900.93075 · doi:10.1109/9.618239
[60] Keel, L.H., Rego, J.I., and Bhattacharyya, S.P., A New Approach to Digital PID Design, IEEE Trans. Automat. Control, 2003, vol. 48, no. 4, pp. 687–692. · Zbl 1364.93281 · doi:10.1109/TAC.2003.809768
[61] Keel, L.H. and Bhattacharyya, S.P., PID Controller Synthesis Free of Analytical Models, Proc. 16 IFAC World Congr., Prague, 2005. · Zbl 1367.93232
[62] Kogan, J., Robust Stability and Convexity, London: Springer, 1995. · Zbl 0827.93002
[63] Lehnigk, S.H., Stability Theorems for Linear Motions with an Introduction to Liapunov’s Direct Method, Englewood Cliffs: Prentice Hall, 1966. · Zbl 0144.10801
[64] Lin, H. and Hollot, C.V., Results on Positive Pairs of Polynomials and Their Application to the Construction of the Stability Domains, Int. J. Control, 1987, vol. 45, no. 3, p. 153. · Zbl 0624.93058 · doi:10.1080/00207178708933889
[65] Lovász, L., Hit-and-Run Mixes Fast, Mathem. Program., 1999, vol. 86, pp. 443–461. · Zbl 0946.90116 · doi:10.1007/s101070050099
[66] Lovász, L. and Vempala, S., Hit-and-Run from the Corner, SIAM J. Comput., 2006, vol. 35, no. 4, pp. 985–1005. · Zbl 1103.52002 · doi:10.1137/S009753970544727X
[67] Lofberg, J., Yalmip: A Toolbox for Modeling and Optimization in MATLAB, Proc. CACSD Conf. Taipei, Taiwan, 2004, URL http://control.ee.ethz.ch/:_joloef/yalmip.php .
[68] Mitrovic, D., Graphical Analysis and Synthesis of Feedback Control Systems. I. Theory and Analysis; II. Synthesis; III. Sampled-data Feedback Control Systems, AIEE Trans. (Appl. and Industry), 1959, vol. 77, pp. 476–496.
[69] Nesterov, Yu. and Nemirovskii, A., Interior-Point Polynomial Algorithms in Convex Programming, Philadelphia: SIAM, 1994. · Zbl 0824.90112
[70] Odenthal, D. and Blue, P., Mapping of H Design Specifications into Parameter Space, Proc. 11th IFAC Sympos. Robust Control Design, Prague, 2000.
[71] Ozguler, A.B. and Kocan, A.A., An Analytic Determination of Stabilizing Feedback Gains, Report Institut fur Dynamische Systeme, Universitat Bremen, 1994.
[72] Petersen, I., A Stabilization Algorithm for a Class of Uncertain Systems, Syst. Control Lett., 1987, vol. 8, pp. 351–357. · Zbl 0618.93056 · doi:10.1016/0167-6911(87)90102-2
[73] Polyak B.T. Robust Linear Algebra and Robust Aperiodicity, in Direct. in Mathemat. Syst. Theory and Optim., Rantzer, A. and Byrnes, C.I., Eds., Berlin: Springer, 2003, pp. 249–260. · Zbl 1049.93021
[74] Polyak, B. and Gryazina, E., Hit-and-Run: New Design Technique for Stabilization, Robustness and Optimization of Linear Systems, Proc. 17th IFAC World Congress, Seoul, Korea, 2008.
[75] Qiu, L., Bernhardsson, B., Rantzer, A., Davison, E.J., Young, P.M., and Doyle, J.C., A Formula for Computation of the Real Stability Radius, Automatica, 1995, vol. 31, no. 6, pp. 879–890. · Zbl 0839.93039 · doi:10.1016/0005-1098(95)00024-Q
[76] Saadaoui, K. and Ozguler, A.B., A New Method for the Computation of All Stabilizing Controllers of a Given Order, Int. J. Control, 2005, vol. 78, no. 1, pp. 14–28. · Zbl 1077.93047 · doi:10.1080/00207170412331332506
[77] Saeki, M. and Aimoto, K., PID Controller Optimization for H-infinity Control by Linear Programming, Int. J. Robust Nonlinear Control, 2000, vol. 10, pp. 83–99. · Zbl 0959.93015 · doi:10.1002/(SICI)1099-1239(200002)10:2<83::AID-RNC464>3.0.CO;2-L
[78] Saeki, M., Fixed Structure PID Controller Design for Standard H Control Problem, Proc. 16 IFAC World Congr., Prague, 2005.
[79] Smith, R.L., Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions, Oper. Res., 1984, vol. 32,no. 6, pp. 1296–1308. · Zbl 0552.65004 · doi:10.1287/opre.32.6.1296
[80] Siljak, D., Analysis and Synthesis of Feedback Control Systems in the Parameter Plane. I. Linear Continuous Systems, II. Sampled-data Systems, AIEE Trans. (Appl. and Industry), 1964, vol. 83, pp. 449–466.
[81] Siljak, D., Generalization of the Parameter Plane Method, IEEE Trans. Automat. Control, 1966, AC-11, no. 1, pp. 63–70. · doi:10.1109/TAC.1966.1098230
[82] Siljak, D., Nonlinear Systems: The Parameter Analysis and Design, New York: Wiley, 1969. · Zbl 0194.39302
[83] Spelta, C. and Gryazina, E., Describing the H -set in the Controller Parameters Space, Proc. Eur. Control Conf., Kos, Greece, 2007, pp. 816–823.
[84] Soylemez, M.T., Munro, N., and Baki, H., Fast Calculation of Stabilizing PID Controllers, Automatica, 2003, vol. 39, pp. 121–126. · Zbl 1013.93016 · doi:10.1016/S0005-1098(02)00180-2
[85] Vishnegradsky, I., Sur la theorie generale des regulateurs, Comput. Rend. Acad. Sci., 1876, vol. 83, pp. 318–321.
[86] Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, Upper Saddle River: Prentice Hall, 1996. · Zbl 0999.49500
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.