×

Robust fault detection and diagnosis in a class of nonlinear systems using a neural sliding mode observer. (English) Zbl 1160.93007

Summary: This article presents a robust fault detection and diagnosis scheme for any abrupt and incipient class of faults that can affect the state of a class of nonlinear systems. A nonlinear observer which synthesizes sliding mode techniques and neural state space models is proposed for the purpose of online health monitoring. The sliding mode term is utilized to eliminate the effect of system uncertainties on the state observation. The switching gain of the sliding mode is updated via an iterative learning algorithm and an iterative fuzzy model, respectively. Moreover, a bank of neural state space models is adopted to estimate various state faults. Robustness with respect to modeling uncertainties, fault sensitivity, and stability of this neural sliding mode observer-based fault diagnosis scheme are rigorously investigated in theory. Moreover, the proposed fault detection and diagnosis scheme is applied to the model of a fourth-order satellite dynamic system, and the simulation results illustrate the effectiveness of the proposed approach.

MSC:

93B12 Variable structure systems
93C10 Nonlinear systems in control theory
92B20 Neural networks for/in biological studies, artificial life and related topics
92C50 Medical applications (general)
68T05 Learning and adaptive systems in artificial intelligence
93C42 Fuzzy control/observation systems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Alessandri A, Proceedings of the American Control Conference pp 2874– (1998)
[2] DOI: 10.1016/S0166-3615(03)00131-3 · doi:10.1016/S0166-3615(03)00131-3
[3] Barbot LP, Proceedings of the 35th Conference on Decision and Control pp 1489– (1996)
[4] Chen J, Robust Model-based Fault Diagnosis for Dynamic Systems (1999) · Zbl 0920.93001 · doi:10.1007/978-1-4615-5149-2
[5] DOI: 10.1002/rnc.1033 · Zbl 1127.93335 · doi:10.1002/rnc.1033
[6] DOI: 10.1109/9.728881 · Zbl 0957.90037 · doi:10.1109/9.728881
[7] DOI: 10.1109/CDC.1992.371368 · doi:10.1109/CDC.1992.371368
[8] DOI: 10.1016/S0005-1098(99)00177-6 · Zbl 0968.93502 · doi:10.1016/S0005-1098(99)00177-6
[9] DOI: 10.1080/00207170410001699030 · Zbl 1062.93006 · doi:10.1080/00207170410001699030
[10] DOI: 10.1080/00207170110089761 · Zbl 1023.93025 · doi:10.1080/00207170110089761
[11] Gertler JJ, Fault Detection and Diagnosis in Engineering Systems (1998)
[12] DOI: 10.1080/002071798221470 · Zbl 0938.93505 · doi:10.1080/002071798221470
[13] Jiang B, Adaptive Observer Design for Robust Fault Estimation 33 pp 767– (2002) · Zbl 1016.93027
[14] Ljung L, Theory and Practice of Recursive Identification (1983)
[15] DOI: 10.1109/37.621474 · doi:10.1109/37.621474
[16] DOI: 10.1049/cp:19980358 · doi:10.1049/cp:19980358
[17] Marino R, Nonlinear Control Design Geometric Adpative and Robust (1995)
[18] Monsees G, Proceedings of the American Control Conference pp 1639– (2000)
[19] DOI: 10.1080/00207170110101766 · Zbl 1015.93009 · doi:10.1080/00207170110101766
[20] DOI: 10.1109/37.55124 · doi:10.1109/37.55124
[21] Patton RJ, Fault Diagnosis in Dynamic Systems: Theory and Applications (1989)
[22] Patton RJ, Issues of Fault Diagnosis for Dynamic Systems (2000) · doi:10.1007/978-1-4471-3644-6
[23] DOI: 10.1109/21.467710 · doi:10.1109/21.467710
[24] DOI: 10.1007/3-540-45737-2_1 · doi:10.1007/3-540-45737-2_1
[25] DOI: 10.1109/CCA.1993.348319 · doi:10.1109/CCA.1993.348319
[26] Suykens J.A.K, Artificial Neural Networks for Modelling and Control of Nonlinear Systems (1996) · doi:10.1007/978-1-4757-2493-6
[27] DOI: 10.1109/72.822525 · doi:10.1109/72.822525
[28] DOI: 10.1016/S0005-1098(02)00098-5 · Zbl 1011.93505 · doi:10.1016/S0005-1098(02)00098-5
[29] DOI: 10.1109/72.822513 · doi:10.1109/72.822513
[30] Utkin V, Sliding Modes in Control Optimization (1992) · doi:10.1007/978-3-642-84379-2
[31] DOI: 10.1080/002071797223659 · Zbl 0887.93022 · doi:10.1080/002071797223659
[32] DOI: 10.1016/S0005-1098(98)80024-1 · Zbl 0931.93012 · doi:10.1016/S0005-1098(98)80024-1
[33] DOI: 10.1109/9.975511 · Zbl 1003.93007 · doi:10.1109/9.975511
[34] DOI: 10.1016/j.automatica.2004.02.018 · Zbl 1056.93034 · doi:10.1016/j.automatica.2004.02.018
[35] DOI: 10.1016/S0893-6080(98)00074-4 · doi:10.1016/S0893-6080(98)00074-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.