zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Controlling hyperchaos in the new hyperchaotic Chen system. (English) Zbl 1160.93384
Summary: We investigate the new hyperchaotic Chen system, which was present recently by introducing a feedback controller to the Chen system. The linear, speed, nonlinear doubly-periodic function and nonlinear hyperbolic function feedback controls are used to suppress hyperchaos to unstable equilibrium. The Routh-Hurwitz theorem is used to derive the conditions of stability of controlled hyperchaotic Chen systems. Moreover numerical simulations are used to verify the effectiveness of the proposed controllers.

93D15Stabilization of systems by feedback
37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Chen, G.; Dong, X.: From chaos to order: perspectives, methodologies and applications. (1998) · Zbl 0908.93005
[2] Ott, E.: Phys. rev. Lett.. 64, 196 (1990)
[3] Pyragas, K.: Phys. lett. A. 170, 421 (1992)
[4] Agzia, H. Z.: Choas, solitons and fractals. 13, 341 (2002)
[5] Yassen, M. T.: Choas, solitons and fractals. 15, 271 (2003)
[6] Tao, C.: Choas, solitons and fractals. 23, 259 (2005)
[7] Rossler, O. E.: Phys. lett. A. 71, 155 (1979)
[8] Cafagna; Grassi, G.: Int. J. Bifur. chaos. 13, 2889 (2003)
[9] Matsumoto, T.: IEEE trans. On CAS. 33, 1143 (1986)
[10] Tamasevicius, A.: Electron. lett.. 32, 957 (1996)
[11] Tamasevicius, A.: Electron. lett.. 33, 542 (1997)
[12] Y. Li, et al., Generating hyperchaos via state feedback control, Int. J. Bifurcation Chaos (accepted, 2004).
[13] Chen, G.; Ueta, T.: Int. J. Bifurcation chaos. 9, 1465 (1999)