A direct approach to Bergman kernel asymptotics for positive line bundles. (English) Zbl 1161.32001

The authors give a new, direct, and elementary construction of the asymptotic expansion with respect to \(k\) of the Bergman kernel associated to a high power \(L^k\) of a positive line bundle \(L\) over a compact complex manifold. Previously, S. Zelditch [Int. Math. Res. Not. 1998, No. 6, 317–331 (1998; Zbl 0922.58082)] and D. Catlin [Trends in Mathematics, 1–23 (1999; Zbl 0941.32002)] obtained such an asymptotic expansion by applying work of L. Boutet de Monvel and J. Sjöstrand [Astérisque 34–35, 123–164 (1976; Zbl 0344.32010)] concerning asymptotic expansions of kernels on strictly pseudoconvex domains. This article uses instead some ideas from a book of the third author [Astérisque 95, 1–166 (1982; Zbl 0524.35007)] to compute local asymptotic Bergman kernels on small coordinate patches. The positivity hypothesis implies that the global Bergman kernel is asymptotically equal to the local kernels.


32A25 Integral representations; canonical kernels (Szegő, Bergman, etc.)
32L10 Sheaves and cohomology of sections of holomorphic vector bundles, general results
46E22 Hilbert spaces with reproducing kernels (= (proper) functional Hilbert spaces, including de Branges-Rovnyak and other structured spaces)
Full Text: DOI


[1] Berman, R., Bergman kernels and local holomorphic Morse inequalities, Math. Z. 248 (2004), 325–344. · Zbl 1066.32002 · doi:10.1007/s00209-003-0630-z
[2] Berman, R., Bergman kernels and equilibrium measures for line bundles over projective manifolds, Preprint, 2007. arXiv:0710.4375.
[3] Berndtsson, B. and Andersson, M., Henkin–Ramirez formulas with weight factors, Ann. Inst. Fourier (Grenoble) 32:3 (1982), v–vi, 91–110. · Zbl 0466.32001
[4] Boutet de Monvel, L. and Sjöstrand, J., Sur la singularité des noyaux de Bergman et de Szego, in Journées: Équations aux dérivées partielles de Rennes (1975), Astérisque 34–35, pp. 123–164, Soc. Math. France, Paris, 1976.
[5] Catlin, D., The Bergman kernel and a theorem of Tian, in Analysis and Geometry in Several Complex Variables (Katata, 1997), Trends Math., pp. 1–23, Birkhäuser, Boston, MA, 1999. · Zbl 0941.32002
[6] Fefferman, C., The Bergman kernel and biholomorphic mappings of pseudoconvex domains, Invent. Math. 26 (1974), 1–65. · Zbl 0289.32012 · doi:10.1007/BF01406845
[7] Grigis, A. and Sjöstrand, J., Microlocal Analysis for Differential Operators, London Mathematical Society Lecture Note Series 196, Cambridge University Press, Cambridge, 1994. · Zbl 0804.35001
[8] Hörmander, L., Fourier integral operators. I, Acta Math. 127 (1971), 79–183. · Zbl 0212.46601 · doi:10.1007/BF02392052
[9] Hörmander, L., The Analysis of Linear Partial Differential Operators. III, Grundlehren der Mathematischen Wissenschaften 274, Springer, Berlin–Heidelberg, 1985.
[10] Keller, J., Asymptotique du noyau de Bergman généralisé sur une varieté de Kähler, ouverte, Preprint, Toulouse, 2004.
[11] Lu, Z., On the lower order terms of the asymptotic expansion of Tian–Yau–Zelditch, Amer. J. Math. 122 (2000), 235–273. · Zbl 0972.53042
[12] Melin, A. and Sjöstrand, J., Determinants of pseudodifferential operators and complex deformations of phase space, Methods Appl. Anal. 9 (2002), 177–237. · Zbl 1082.35176
[13] Sjöstrand, J., Singularités Analytiques Microlocales, Astérisque 95, Soc. Math. France, Paris, 1982.
[14] Tian, G., On a set of polarized Kähler metrics on algebraic manifolds, J. Differential Geom. 32 (1990), 99–130. · Zbl 0706.53036
[15] Zelditch, S., Szego kernels and a theorem of Tian, Int. Math. Res. Notices 1998 (1998), 317–331. · Zbl 0922.58082
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.