×

Positive solutions to nonlinear first-order PBVPs with parameter on time scales. (English) Zbl 1161.34319

Summary: In this paper we consider the following nonlinear first-order periodic boundary value problem with parameter on a time scale \(\mathbb T\)
\[ \begin{cases} x^\Delta(t)+p(t)x(\sigma(t))=\lambda f(x(t)),\quad t\in[0,T]_{\mathbb T},\\ x(0)=x(\sigma(T)),\end{cases} \]
where \(\lambda>0\) is a parameter. For suitable \(\lambda>0\), some existence, multiplicity and nonexistence criteria of positive solutions are established by using well-known results from the fixed-point index.

MSC:

34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations
34B15 Nonlinear boundary value problems for ordinary differential equations
39A10 Additive difference equations
47N20 Applications of operator theory to differential and integral equations
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] Agarwal, R. P.; Bohner, M., Basic calculus on time scales and some of its applications, Results Math., 35, 3-22 (1999) · Zbl 0927.39003
[2] Atici, F. M.; Cabada, A., Existence and uniqueness results for discrete second-order periodic boundary value problems, Comput. Math. Appl., 45, 1417-1427 (2003) · Zbl 1057.39008
[3] Bohner, M.; Peterson, A., Dynamic Equations on Time Scales (2001), Springer-Verlag: Springer-Verlag New York · Zbl 1021.34005
[4] Cabada, A., The method of lower and upper solutions for \(n\) th-order periodic boundary value problems, J. Appl. Math. Stochastic Anal., 7, 33-47 (1994) · Zbl 0801.34026
[5] Cabada, A., Extremal solutions and Green’s functions of higher order periodic boundary value problems in time scales, J. Math. Anal. Appl., 290, 35-54 (2004) · Zbl 1056.39018
[6] Cabada, A.; Lois, S., Maximum principles for fourth and sixth order periodic boundary value problems, Nonlinear Anal., 29, 1161-1171 (1997) · Zbl 0886.34018
[7] Cabada, A.; Nieto, J. J., Extremal solutions of second order nonlinear periodic boundary value problems, Appl. Math. Comput., 40, 135-145 (1990) · Zbl 0723.65056
[8] Cabada, A.; Otero-Espinar, V., Optimal existence results for \(n\)-th order periodic boundary value difference problems, J. Math. Anal. Appl., 247, 67-86 (2000) · Zbl 0962.39006
[9] Cabada, A.; Otero-Espinar, V., Comparison results for \(n\)-th order periodic difference equations, Nonlinear Anal., 47, 2395-2406 (2001) · Zbl 1042.39505
[10] Deimling, K., Nonlinear Functional Analysis (1985), Springer: Springer Berlin · Zbl 0559.47040
[11] Gulsan Topal, S., Second-order periodic boundary value problems on time scales, Comput. Math. Appl., 48, 637-648 (2004) · Zbl 1068.34016
[12] Guo, D.; Lakshmikantham, V., Nonlinear Problems in Abstract Cones (1988), Academic Press: Academic Press Orlando, FL · Zbl 0661.47045
[13] Hilger, S., Analysis on measure chains — A unified approach to continuous and discrete calculus, Results Math., 18, 18-56 (1990) · Zbl 0722.39001
[14] Kaymakcalan, B.; Lakshmikanthan, V.; Sivasundaram, S., Dynamic Systems on Measure Chains (1996), Kluwer Academic Publishers: Kluwer Academic Publishers Boston · Zbl 0869.34039
[15] Krasnoselskii, M., Positive Solutions of Operator Equations (1964), Noordhoff: Noordhoff Groningen
[16] Lakshmikantham, V., Periodic boundary value problems of first and second order differential equations, J. Appl. Math. Simulat., 2, 131-138 (1989) · Zbl 0712.34058
[17] Lakshmikantham, V.; Leela, S., Remarks on first and second order periodic boundary value problems, Nonlinear Anal., 8, 281-287 (1984) · Zbl 0532.34029
[18] Leela, S.; Oguztoreli, M. N., Periodic boundary value problem for differential equations with delay and monotone iterative method, J. Math. Anal. Appl., 122, 301-307 (1987) · Zbl 0616.34062
[19] Leggett, R. W.; Williams, L. R., Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28, 673-688 (1979) · Zbl 0421.47033
[20] Li, Y., Positive solutions of fourth-order periodic boundary value problems, Nonlinear Anal., 54, 1069-1078 (2003) · Zbl 1030.34025
[21] Li, Y., Positive solutions of higher-order periodic boundary value problems, Comput. Math. Appl., 48, 153-161 (2004) · Zbl 1062.34021
[22] Lloyd, N. G., Degree Theory (1978), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0367.47001
[23] Peng, S., Positive solutions for first order periodic boundary value problem, Appl. Math. Comput., 158, 345-351 (2004) · Zbl 1082.34510
[24] Rachunkova, I.; Tvrdy, M.; Vrkoc, I., Existence of nonnegative and nonpositive solutions for second order periodic boundary value problems, J. Differential Equations, 176, 445-469 (2001) · Zbl 1004.34008
[25] Sun, J. P., Positive solution for first-order discrete periodic boundary value problem, Appl. Math. Lett., 19, 1244-1248 (2006) · Zbl 1180.39023
[26] Sun, J. P.; Li, W. T., Positive solution for system of nonlinear first-order PBVPs on time scales, Nonlinear Anal., 62, 131-139 (2005) · Zbl 1071.34017
[27] Sun, J. P.; Li, W. T., Existence of solutions to nonlinear first-order PBVPs on time scales, Nonlinear Anal., 67, 883-888 (2007) · Zbl 1120.34314
[28] Sun, J. P.; Li, W. T., Existence and multiplicity of positive solutions to nonlinear first-order PBVPs on time scales, Comput. Math. Appl., 54, 861-871 (2007) · Zbl 1134.34016
[29] Tisdell, C. C., Existence of solutions to first-order periodic boundary value problems, J. Math. Anal. Appl., 323, 1325-1332 (2006) · Zbl 1109.34016
[30] Wan, Z.; Chen, Y., Remarks on the periodic boundary value problems for first-order differential equations, Comput. Math. Appl., 37, 49-55 (1999) · Zbl 0936.34013
[31] Wang, H., Positive periodic solutions of functional differential equations, J. Differential Equations, 202, 354-366 (2004) · Zbl 1064.34052
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.