×

Chaos synchronization between two novel different hyperchaotic systems with unknown parameters. (English) Zbl 1161.34338

Summary: This work is devoted to study the synchronization between two different hyperchaotic systems with fully unknown parameters, i.e., an uncertain hyperchaotic Lorenz system and an uncertain hyperchaotic Lü system. Based on the Lyapunov stability theory, a new adaptive controller with parameter update law is designed to synchronize these two hyperchaotic systems asymptotically and globally. Numerical simulations are presented to verify the effectiveness of the synchronization scheme.

MSC:

34D05 Asymptotic properties of solutions to ordinary differential equations
34C28 Complex behavior and chaotic systems of ordinary differential equations
34H05 Control problems involving ordinary differential equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rössler, O. E., An equation for hyperchaos, Phys. Lett. A, 71, 155-157 (1979) · Zbl 0996.37502
[2] Li, Y.; Tang, W. K.S.; Chen, G. R., Generating hyperchaos via state feedback control, Internat. J. Bifur. Chaos, 15, 3367-3375 (2005)
[3] Yan, Z., Controlling hyperchaos in the new hyperchaotic Chen system, Appl. Math. Comput., 168, 1239-1250 (2005) · Zbl 1160.93384
[4] Gao, T.; Chen, G.; Chen, Z.; Cang, S., The generation and circuit implementation of a new hyper-chaos based upon Lorenz system, Phys. Lett. A, 361, 78-86 (2007) · Zbl 1170.37308
[5] Yassen, M. T., Synchronization hyperchaos of hyperchaotic systems, Chaos Solitons Fractals (2006) · Zbl 1195.34092
[6] Vincent, U. E., Synchronization of identical and non-identical 4-D chaotic systems using active control, Chaos Solitons Fractals (2006) · Zbl 1153.37359
[7] Elabbasy, E. M.; Agiza, H. N.; El-Dessoky, M. M., Adaptive synchronization of a hyperchaotic system with uncertain parameter, Chaos Solitons Fractals, 30, 1133-1142 (2006) · Zbl 1142.37325
[8] Agiza, H. N., Controlling chaos for the dynamical system of coupled dynamos, Chaos Solitons Fractals, 13, 341-352 (2002) · Zbl 0994.37047
[9] Liu, F.; Ren, Y.; Shan, X.; Qiu, Z., A linear feedback synchronization theorem for a class of chaotic systems, Chaos Solitons Fractals, 13, 723-730 (2002) · Zbl 1032.34045
[10] Chen, M.; Han, Z., Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos Solitons Fractals, 17, 709-716 (2003) · Zbl 1044.93026
[11] Jiang, G. P.; Chen, G. R.; Tang, K., A new criterion for chaos synchronization using linear state feedback control, Internat. J. Bifur. Chaos, 13, 2343-2351 (2003) · Zbl 1064.37515
[12] Yassen, M. T., Adaptive control and synchronization of a modified Chua’s circuit system, Appl. Math. Comput., 135, 113-118 (2003) · Zbl 1038.34041
[13] Lian, K. Y.; Liu, P.; Chiang, T. S.; Chiu, C. S., Adaptive synchronization design for chaotic systems via a scalar driving signal, IEEE Trans. Circuits Syst. I, 49, 17-25 (2002)
[14] Agiza, H. N., Chaos synchronization of Lü dynamical system, Nonlinear Anal. TMA, 58, 11-20 (2004) · Zbl 1057.34042
[15] Li, Z.; Chen, G. R., Robust adaptive synchronization of uncertain dynamical networks, Phys. Lett. A, 324, 166-178 (2004) · Zbl 1123.93316
[16] Lu, J.; Wu, X.; Han, X.; Lü, J., Adaptive feedback synchronization of a unified chaotic system, Phys. Lett. A, 329, 327-333 (2004) · Zbl 1209.93119
[17] Wu, X., Adaptive synchronization between two different hyperchaotic systems, Nonlinear Anal. (2007)
[18] Liao, X. X.; Chen, G. R., Chaos synchronization of general Lur’s systems via time-delay feedback control, Internat. J. Bifur. Chaos, 13, 207-213 (2003) · Zbl 1129.93509
[19] Wang, C.; Ge, S., Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos Solitons Fractals, 12 (2001), 1199-206 · Zbl 1015.37052
[20] Yu, Y.; Zhang, S., Controlling uncertain Lü system using backstepping design, Chaos Solitons Fractals, 15, 897-902 (2003) · Zbl 1033.37050
[21] Konishi, K.; Hirai, M.; Kokame, H., Sliding mode control for a class of chaotic systems, Phys. Lett. A, 245, 511-517 (1998)
[22] Itoh, M.; Yang, T.; Chua, L. O., Conditions for impulsive synchronization of chaotic and hyperchaotic systems, Internat. J. Bifur. Chaos, 11, 551-556 (2001) · Zbl 1090.37520
[23] Kilic, R., Experimental study on impulsive synchronization between two modified Chua’s circuits, Nonlinear Anal. Real World Appl., 7, 1298-1303 (2006) · Zbl 1130.37359
[24] Jia, Q., Adaptive control and synchronization of a new hyperchaotic system with unknown parameters, Phys. Lett. A, 362, 424-429 (2007) · Zbl 1197.34107
[25] Zhang, H., Controlling and tracking hyperchaotic Rössler system via active backstepping design, Chaos Solitons Fractals, 26, 353-361 (2005) · Zbl 1153.93381
[26] Jang, M.; Chen, C.; Chen, C., Sliding mode control of hyperchaos in Rössler systems, Chaos Solitons Fractals, 14, 1465-1476 (2002) · Zbl 1037.93507
[27] T. Gao, Z. Chen, Q. Gu, Z. Yuan, A new hyper-chaos generated from generalized Lorenz system via nonlinear feedback, Chaos Solitons Fractals (2006), doi:10.1016/j.chaos.2006.05.030; T. Gao, Z. Chen, Q. Gu, Z. Yuan, A new hyper-chaos generated from generalized Lorenz system via nonlinear feedback, Chaos Solitons Fractals (2006), doi:10.1016/j.chaos.2006.05.030
[28] Wang, F.; Liu, C., Passive control of hyperchaotic Lorenz system and circuit experimental on EWB, Internat. J. Modern Phys. B, 21, 3053-3064 (2007) · Zbl 1139.37302
[29] Wang, F.; Liu, C., Synchronization of hyperchaotic Lorenz system based on passive control, Chinese Phys., 15, 1971-1975 (2006)
[30] Chen, A.; Lu, J.; Lü, J.; Yu, S., Generating hyperchaotic Lü attractor via state feedback control, Physica A, 364, 103-110 (2006)
[31] Jia, Z.; Lu, J.; Deng, G., Nonlinearly state feedback and adaptive synchronization of hyperchaotic Lü systems, Syst. Eng. Electron., 29, 598-600 (2007) · Zbl 1153.93410
[32] Gao, B.; Lu, J., Adaptive synchronization of hyperchaotic Lü system with uncertainty, Chinese Phys., 16, 0666-0670 (2007)
[33] Zhou, X. B., Adaptive control and synchronization of a new modified hyperchaotic Lü system with uncertain parameters, Chaos Solitons Fractals (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.