zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Chaos synchronization between two novel different hyperchaotic systems with unknown parameters. (English) Zbl 1161.34338
Summary: This work is devoted to study the synchronization between two different hyperchaotic systems with fully unknown parameters, i.e., an uncertain hyperchaotic Lorenz system and an uncertain hyperchaotic Lü system. Based on the Lyapunov stability theory, a new adaptive controller with parameter update law is designed to synchronize these two hyperchaotic systems asymptotically and globally. Numerical simulations are presented to verify the effectiveness of the synchronization scheme.

34D05Asymptotic stability of ODE
34C28Complex behavior, chaotic systems (ODE)
34H05ODE in connection with control problems
Full Text: DOI
[1] Rössler, O. E.: An equation for hyperchaos, Phys. lett. A 71, 155-157 (1979) · Zbl 0996.37502 · doi:10.1016/0375-9601(79)90150-6
[2] Li, Y.; Tang, W. K. S.; Chen, G. R.: Generating hyperchaos via state feedback control, Internat. J. Bifur. chaos 15, 3367-3375 (2005)
[3] Yan, Z.: Controlling hyperchaos in the new hyperchaotic Chen system, Appl. math. Comput. 168, 1239-1250 (2005) · Zbl 1160.93384 · doi:10.1016/j.amc.2004.10.016
[4] Gao, T.; Chen, G.; Chen, Z.; Cang, S.: The generation and circuit implementation of a new hyper-chaos based upon Lorenz system, Phys. lett. A 361, 78-86 (2007) · Zbl 1170.37308 · doi:10.1016/j.physleta.2006.09.042
[5] Yassen, M. T.: Synchronization hyperchaos of hyperchaotic systems, Chaos solitons fractals (2006) · Zbl 1195.34092
[6] Vincent, U. E.: Synchronization of identical and non-identical 4-D chaotic systems using active control, Chaos solitons fractals (2006) · Zbl 1153.37359
[7] Elabbasy, E. M.; Agiza, H. N.; El-Dessoky, M. M.: Adaptive synchronization of a hyperchaotic system with uncertain parameter, Chaos solitons fractals 30, 1133-1142 (2006) · Zbl 1142.37325 · doi:10.1016/j.chaos.2005.09.047
[8] Agiza, H. N.: Controlling chaos for the dynamical system of coupled dynamos, Chaos solitons fractals 13, 341-352 (2002) · Zbl 0994.37047 · doi:10.1016/S0960-0779(00)00234-4
[9] Liu, F.; Ren, Y.; Shan, X.; Qiu, Z.: A linear feedback synchronization theorem for a class of chaotic systems, Chaos solitons fractals 13, 723-730 (2002) · Zbl 1032.34045 · doi:10.1016/S0960-0779(01)00011-X
[10] Chen, M.; Han, Z.: Controlling and synchronizing chaotic Genesio system via nonlinear feedback control, Chaos solitons fractals 17, 709-716 (2003) · Zbl 1044.93026 · doi:10.1016/S0960-0779(02)00487-3
[11] Jiang, G. P.; Chen, G. R.; Tang, K.: A new criterion for chaos synchronization using linear state feedback control, Internat. J. Bifur. chaos 13, 2343-2351 (2003) · Zbl 1064.37515 · doi:10.1142/S0218127403008004
[12] Yassen, M. T.: Adaptive control and synchronization of a modified Chua’s circuit system, Appl. math. Comput. 135, 113-118 (2003) · Zbl 1038.34041 · doi:10.1016/S0096-3003(01)00318-6
[13] Lian, K. Y.; Liu, P.; Chiang, T. S.; Chiu, C. S.: Adaptive synchronization design for chaotic systems via a scalar driving signal, IEEE trans. Circuits syst. I 49, 17-25 (2002)
[14] Agiza, H. N.: Chaos synchronization of Lü dynamical system, Nonlinear anal. TMA 58, 11-20 (2004) · Zbl 1057.34042 · doi:10.1016/j.na.2004.04.002
[15] Li, Z.; Chen, G. R.: Robust adaptive synchronization of uncertain dynamical networks, Phys. lett. A 324, 166-178 (2004) · Zbl 1123.93316 · doi:10.1016/j.physleta.2004.02.058
[16] Lu, J.; Wu, X.; Han, X.; Lü, J.: Adaptive feedback synchronization of a unified chaotic system, Phys. lett. A 329, 327-333 (2004) · Zbl 1209.93119 · doi:10.1016/j.physleta.2004.07.024
[17] Wu, X.: Adaptive synchronization between two different hyperchaotic systems, Nonlinear anal. (2007)
[18] Liao, X. X.; Chen, G. R.: Chaos synchronization of general lur’s systems via time-delay feedback control, Internat. J. Bifur. chaos 13, 207-213 (2003) · Zbl 1129.93509 · doi:10.1142/S0218127403006455
[19] Wang, C.; Ge, S.: Adaptive synchronization of uncertain chaotic systems via backstepping design, Chaos solitons fractals 12 (2001) · Zbl 1015.37052 · doi:10.1016/S0960-0779(00)00089-8
[20] Yu, Y.; Zhang, S.: Controlling uncertain Lü system using backstepping design, Chaos solitons fractals 15, 897-902 (2003) · Zbl 1033.37050 · doi:10.1016/S0960-0779(02)00205-9
[21] Konishi, K.; Hirai, M.; Kokame, H.: Sliding mode control for a class of chaotic systems, Phys. lett. A 245, 511-517 (1998)
[22] Itoh, M.; Yang, T.; Chua, L. O.: Conditions for impulsive synchronization of chaotic and hyperchaotic systems, Internat. J. Bifur. chaos 11, 551-556 (2001) · Zbl 1090.37520 · doi:10.1142/S0218127401002262
[23] Kilic, R.: Experimental study on impulsive synchronization between two modified Chua’s circuits, Nonlinear anal. Real world appl. 7, 1298-1303 (2006) · Zbl 1130.37359 · doi:10.1016/j.nonrwa.2005.12.004
[24] Jia, Q.: Adaptive control and synchronization of a new hyperchaotic system with unknown parameters, Phys. lett. A 362, 424-429 (2007) · Zbl 1197.34107 · doi:10.1016/j.physleta.2006.10.044
[25] Zhang, H.: Controlling and tracking hyperchaotic Rössler system via active backstepping design, Chaos solitons fractals 26, 353-361 (2005) · Zbl 1153.93381 · doi:10.1016/j.chaos.2004.12.032
[26] Jang, M.; Chen, C.; Chen, C.: Sliding mode control of hyperchaos in Rössler systems, Chaos solitons fractals 14, 1465-1476 (2002) · Zbl 1037.93507 · doi:10.1016/S0960-0779(02)00084-X
[27] T. Gao, Z. Chen, Q. Gu, Z. Yuan, A new hyper-chaos generated from generalized Lorenz system via nonlinear feedback, Chaos Solitons Fractals (2006), doi:10.1016/j.chaos.2006.05.030
[28] Wang, F.; Liu, C.: Passive control of hyperchaotic Lorenz system and circuit experimental on EWB, Internat. J. Modern phys. B 21, 3053-3064 (2007) · Zbl 1139.37302 · doi:10.1142/S0217979207037442
[29] Wang, F.; Liu, C.: Synchronization of hyperchaotic Lorenz system based on passive control, Chinese phys. 15, 1971-1975 (2006)
[30] Chen, A.; Lu, J.; Lü, J.; Yu, S.: Generating hyperchaotic Lü attractor via state feedback control, Physica A 364, 103-110 (2006)
[31] Jia, Z.; Lu, J.; Deng, G.: Nonlinearly state feedback and adaptive synchronization of hyperchaotic Lü systems, Syst. eng. Electron. 29, 598-600 (2007) · Zbl 1153.93410
[32] Gao, B.; Lu, J.: Adaptive synchronization of hyperchaotic Lü system with uncertainty, Chinese phys. 16, 0666-0670 (2007)
[33] Zhou, X. B.: Adaptive control and synchronization of a new modified hyperchaotic Lü system with uncertain parameters, Chaos solitons fractals (2007)