zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
New results on the periodic solutions for a kind of Rayleigh equation with two deviating arguments. (English) Zbl 1161.34345
Existence of periodic solutions for the class of equations with two deviating arguments of the form $$x''(t)+f(x'(t))+g_1(t,x(t-{\tau}_1(t)))+g_2(t,x(t-{\tau}_2(t)))=p(t)$$ is investigated. The main tools used by the authors are: the continuation theorem of the coincidence degree, a priori estimates, and differential inequalities, thus improving and generalizing previous results.

MSC:
34K13Periodic solutions of functional differential equations
47N20Applications of operator theory to differential and integral equations
Software:
dde23
WorldCat.org
Full Text: DOI
References:
[1] Wang, G.; Cheng, S.: A priori bounds for periodic solutions of a delay Rayleigh equation. Appl. math. Lett. 12, 41-44 (1999) · Zbl 0980.34068
[2] Lu, S.; Ge, W.: Some new results on the existence of periodic solutions to a kind of Rayleigh equation with a deviating argument. Nonlinear anal. 56, 501-514 (2004) · Zbl 1078.34048
[3] Lu, S.; Ge, W.; Zheng, Z.: Periodic solutions for neutral differential equation with deviating arguments. Appl. math. Comput. 152, 17-27 (2004) · Zbl 1070.34091
[4] Lu, S.; Ge, W.; Zheng, Z.: A new result on the existence of periodic solutions for a kind of Rayleigh equation with a deviating argument. Acta math. Sinica 47, 299-304 (2004) · Zbl 1293.34087
[5] Shampine, L. F.; Thompson, S.: Solving ddes in Matlab. Appl. numer. Math. 37, 441-458 (2001) · Zbl 0983.65079
[6] Huang, X.; Xiang, Z.: On existence of 2p-periodic solutions for delay Duffing equation x”$(t)+$g(t,x(t-${\tau}(t)))=p(t)$. Chinese sci. Bull. 39, 201-203 (1994)
[7] Liu, B.; Huang, L.: Periodic solutions for a kind of Rayleigh equation with a deviating argument. J. math. Anal. appl. 321, 491-500 (2006) · Zbl 1103.34062
[8] Liu, B.; Huang, L.: Periodic solutions for nonlinear nth order differential equations with delays. J. math. Anal. appl. 313, 700-716 (2006) · Zbl 1105.34044
[9] Liu, B.; Huang, L.: Periodic solutions for a class of forced Liénard-type equations. Acta math. Appl. sin. Engl. ser. 21, 81-92 (2005) · Zbl 1093.34020
[10] Peng, L.: Periodic solutions for a kind of Rayleigh equation with two deviating arguments. J. franklin inst. 7, 676-687 (2006) · Zbl 1114.34051
[11] Gaines, R.; Mawhin, J.: Coincidence degree and nonlinear differential equations. (1977) · Zbl 0339.47031
[12] Deimling, K.: Nonlinear functional analysis. (1985) · Zbl 0559.47040