×

On the global asymptotic stability of a second-order system of difference equations. (English) Zbl 1161.39013

A sufficient condition is obtained for the global asymptotic stability of the following system of difference equations \(z_{n+1}=(t_nz_{n-1}+a)/(t_n+z_{n-1})\), \(t_{n+1}=(z_nt_{n-1}+a)/(z_n+t_{n-1})\), \(n=0,1,2,\dots\), where the parameter \(a\in(0,\infty)\) and the initial values \((z_k,t_k)\in(0,\infty)\) (for \(k=-1,0)\).

MSC:

39A11 Stability of difference equations (MSC2000)
39A20 Multiplicative and other generalized difference equations
PDF BibTeX XML Cite
Full Text: DOI EuDML

References:

[1] DOI: 10.1016/j.camwa.2008.02.028 · Zbl 1155.39300
[2] DOI: 10.1080/10236199908808204 · Zbl 0951.39002
[3] DOI: 10.1016/j.aml.2006.02.022 · Zbl 1131.39006
[4] DOI: 10.1016/j.jmaa.2006.02.087 · Zbl 1112.39002
[5] Rostocker Mathematisches Kolloquium (59) pp 41– (2005)
[6] Dynamics of Continuous, Discrete & Impulsive Systems. Series A 13 (3-4) pp 499– (2006)
[7] (2002)
[8] DOI: 10.1080/1023619031000071303 · Zbl 1055.39014
[9] Communications on Applied Nonlinear Analysis 5 (2) pp 47– (1998)
[10] Differential Equations and Dynamical Systems 7 (2) pp 181– (1999)
[11] DOI: 10.1016/j.jmaa.2005.04.077 · Zbl 1090.39009
[12] DOI: 10.1155/2007/56813 · Zbl 1180.39009
[13] DOI: 10.1016/j.aml.2006.03.002 · Zbl 1131.39009
[14] DOI: 10.1080/00036810802140657 · Zbl 1146.39024
[15] DOI: 10.1155/2008/193872 · Zbl 1151.26316
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.