zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Asymptotic property for linear integro-differential systems. (English) Zbl 1161.45006
The authors study the asymptotic property for a certain linear integro-differential system and its perturbation. The variation of constants formula by means of the resolvent matrices and a certain integral inequality with explicit estimate established by the reviewer are used to obtain the results.

45M05Asymptotic theory of integral equations
45J05Integro-ordinary differential equations
Full Text: DOI
[1] Brauer, F.: Asymptotic equivalence and asymptotic behavior of linear systems. Michigan math. J. 9, 33-43 (1962) · Zbl 0111.08603
[2] Cesari, L.: Asymptotic behavior and stability properties in ordinary differential equations. (1963) · Zbl 0111.08701
[3] Choi, S. K.; Koo, N. J.: Asymptotic equivalence between two linear Volterra difference systems. Comput. math. Appl. 47, 461-471 (2004) · Zbl 1053.39007
[4] Choi, S. K.; Koo, N. J.; Dontha, S.: Asymptotic property in variation for nonlinear differential systems. Appl. math. Lett. 18, 117-126 (2005) · Zbl 1075.34042
[5] Choi, S. K.; Koo, N. J.; Goo, Y. H.: Asymptotic property of nonlinear Volterra difference systems. Nonlinear anal. 51, 321-337 (2002) · Zbl 1032.39001
[6] Lakshmikantham, V.; Leela, S.: Differential and integral inequalities with theory and applications. (1969) · Zbl 0177.12403
[7] Lakshmikantham, V.; Rao, M. R. M.: Theory of integro-differential equations. (1995) · Zbl 0849.45004
[8] J. Morchalo, Integral equivalence of two systems of integro-differential equations, in: Proc. Int. Conf. on Differential Equations, Bulgaria, 1985, pp. 841--844
[9] Nohel, J. A.: Asymptotic equivalence of Volterra equations. Ann. mat. Pura appl. 96, 339-347 (1973) · Zbl 0276.45010
[10] Pachpatte, B. G.: On some retarded integral inequalities and applications. J. ineq. Pure appl. Math. 3, No. 2, 1-7 (2002) · Zbl 0994.26017
[11] Rao, M. R. M.; Srinivas, P.: Asymptotic behavior of solutions of Volterra integro-differential equations. Proc. amer. Math. soc. 94, 55-60 (1985) · Zbl 0577.45010
[12] Wintner, A.: Asymptotic equilibria. Amer. J. Math. 68, 125-132 (1946) · Zbl 0063.08289
[13] Zafer, A.: On asymptotic equivalence of linear and quasilinear difference equations. Appl. anal. 84, 899-908 (2005) · Zbl 1087.39018