Bayard, Pierre; Schnürer, Oliver C. Entire spacelike hypersurfaces of constant Gauß curvature in Minkowski space. (English) Zbl 1161.53041 J. Reine Angew. Math. 627, 1-29 (2009). From the authors’ abstract: “We prove existence and stability of smooth strictly convex spacelike hypersurfaces of prescribed Gauss curvature in Minkowski space. The proof is based on barrier constructions and local a priori estimates.” Reviewer: Kazim Ilarslan (Kirikkale) Cited in 2 Documents MSC: 53C42 Differential geometry of immersions (minimal, prescribed curvature, tight, etc.) 53C50 Global differential geometry of Lorentz manifolds, manifolds with indefinite metrics PDF BibTeX XML Cite \textit{P. Bayard} and \textit{O. C. Schnürer}, J. Reine Angew. Math. 627, 1--29 (2009; Zbl 1161.53041) Full Text: DOI arXiv References: [1] Mark A., Calc. Var. Part. Di\currency. Equ. 25 pp 2– (2006) [2] DOI: 10.1007/BF01211061 · Zbl 0512.53055 · doi:10.1007/BF01211061 [3] Bayard Pierre, Calc. Var. Part. Di\currency. Equ. 26 pp 2– (2006) [4] Chau Albert, Comm. Anal. Geom. 13 pp 4– (2005) [5] Choi Hyeong In, J. Di\currency. Geom. 32 pp 3– (1990) [6] Clutterbuck Julie, Calc. Var. Part. Di\currency. Equ. 29 pp 3– (2007) [7] Delanoë Philippe, Ukrainian Math. J. 42 pp 12– (1990) [8] Ecker Klaus, J. Di\currency. Geom. 46 pp 3– (1997) [9] DOI: 10.1007/BF01232278 · Zbl 0707.53008 · doi:10.1007/BF01232278 [10] Gerhardt Claus, J. Di\currency. Geom. 43 pp 3– (1996) [11] DOI: 10.1512/iumj.2000.49.1861 · Zbl 1034.53064 · doi:10.1512/iumj.2000.49.1861 [12] Gerhardt Claus, Math. 554 pp 157– (2003) [13] DOI: 10.1090/S0002-9947-98-02079-0 · Zbl 0919.35046 · doi:10.1090/S0002-9947-98-02079-0 [14] Guan Bo, Math. 595 pp 167– (2006) [15] DOI: 10.1007/BF01474165 · Zbl 0486.10020 · doi:10.1007/BF01474165 [16] DOI: 10.1007/BF01195136 · Zbl 0828.53050 · doi:10.1007/BF01195136 [17] DOI: 10.2140/pjm.2004.213.1 · Zbl 1049.43004 · doi:10.2140/pjm.2004.213.1 [18] Shi Wan-Xiong, J. Di\currency. Geom. 30 pp 1– (1989) [19] DOI: 10.1007/BF01404752 · Zbl 0526.55015 · doi:10.1007/BF01404752 [20] DOI: 10.1007/BF02393303 · Zbl 0887.35061 · doi:10.1007/BF02393303 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.