zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Multitype Bienaymé-Galton-Watson processes escaping extinction. (English) Zbl 1161.60031
Summary: In the framework of a multitype Bienaymé--Galton--Watson (BGW) process, the event that the daughter’s type differs from the mother’s type can be viewed as a mutation event. Assuming that mutations are rare, we study a situation where all types except one produce on average less than one offspring. We establish a neat asymptotic structure for the BGW process escaping extinction due to a sequence of mutations toward the supercritical type. Our asymptotic analysis is performed by letting mutation probabilities tend to 0. The limit process, conditional on escaping extinction, is another BGW process with an enriched set of types, allowing us to delineate a stem lineage of particles that leads toward the escape event. The stem lineage can be described by a simple Markov chain on the set of particle types. The total time to escape becomes a sum of a random number of independent, geometrically distributed times spent at intermediate types.

60J80Branching processes
92D25Population dynamics (general)
Full Text: DOI
[1] Athreya, K. B. and Ney, P. E. (1972). Branching Processes . Springer, New York. · Zbl 0259.60002
[2] Ethier, S. N. and Kurtz, T. G. (1986). Markov Processes . John Wiley, New York. · Zbl 0592.60049
[3] Geiger, J. (1999). Elementary new proofs of classical limit theorems for Galton--Watson processes. J. Appl. Prob. 36 , 301--309. · Zbl 0942.60071 · doi:10.1239/jap/1032374454
[4] Haccou, P., Jagers, P. and Vatutin, V. A. (2007). Branching Processes: Variation, Growth and Extinction of Populations . Cambridge University Press. · Zbl 1118.92001 · doi:10.1017/CBO9780511629136
[5] Iwasa, Y., Michor, F. and Nowak, M. A. (2003). Evolutionary dynamics of escape from biomedical intervention. Proc. R. Soc. London B 270 , 2573--2578.
[6] Iwasa, Y., Michor, F. and Nowak, M. A. (2004). Evolutionary dynamics of invasion and escape. J. Theoret. Biol. 226 , 205--214. · doi:10.1016/j.jtbi.2003.08.014
[7] Lyons, R., Pemantle, R. and Peres, Y. (1995). Conceptual proofs of $l\rm logl$ criteria for mean behavior of branching processes. Ann. Prob. 23 , 1125--1138. · Zbl 0840.60077 · doi:10.1214/aop/1176988176
[8] Serra, M. C. and Haccou, P. (2007). Dynamics of escape mutants. Theoret. Pop. Biol. 72 , 167--178. · Zbl 1123.92027 · doi:10.1016/j.tpb.2007.01.005
[9] Sevast’yanov, B. A. (1971). Branching Processes . Nauka, Moscow (in Russian).
[10] Taib, Z. (1992). Branching Processes and Neutral Evolution (Lecture Notes Biomath. 93 ). Springer, Berlin. · Zbl 0748.60081