zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Gaussian fields and Gaussian sheets with generalized Cauchy covariance structure. (English) Zbl 1161.60314
Summary: Two types of Gaussian processes, namely the Gaussian field with generalized Cauchy covariance (GFGCC) and the Gaussian sheet with generalized Cauchy covariance (GSGCC) are considered. Some of the basic properties and the asymptotic properties of the spectral densities of these random fields are studied. The associated self-similar random fields obtained by applying the Lamperti transformation to GFGCC and GSGCC are studied.

60G10Stationary processes
60G17Sample path properties
60G60Random fields
Full Text: DOI
[1] Adler, A. J.: The geometry of random fields, (1981) · Zbl 0478.60059
[2] Anderson, D. N.: A multivariate linnik distribution, Stat. probab. Lett. 14, 333-336 (1992) · Zbl 0754.60022 · doi:10.1016/0167-7152(92)90067-F
[3] Andrews, George E.; Askey, Richard; Roy, Ranjan: Special functions, Encyclopedia of mathematics and its applications 71 (1999) · Zbl 0920.33001
[4] Ayache, A.: Hausdorff dimension of the graph of the fractional Brownian sheet, Rev. mat. Iberoamericana 20, 395-412 (2004) · Zbl 1057.60033
[5] A. Ayache, S. Leger, Fractional and multifractional Brownian sheet, unpublished manuscript
[6] Ayache, A.; Xiao, Y.: Asymptotic properties and Hausdorff dimensions of fractional Brownian sheets, J. Fourier anal. Appl. 11, 407-439 (2005) · Zbl 1088.60033 · doi:10.1007/s00041-005-4048-3
[7] Benassi, A.; Jaffard, S.; Roux, D.: Elliptic Gaussian random processes, Rev. mat. Iberoamericana 13, 19-90 (1997) · Zbl 0880.60053
[8] Berizzi, F.; Mese, E. Dalle; Martorella, M.: A sea surface fractal model for ocean remote sensing, Int. J. Remote sensing 25, 1265-1270 (2004)
[9] Christakos, G.: Modern spatiotemporal geostatistics, (2000)
[10] Cressie, N.; Huang, H. -C.: Classes of nonseparable, spatio-temporal stationary covariance functions, Jasa 94, 1330-1340 (1999) · Zbl 0999.62073 · doi:10.2307/2669946
[11] Davies, S.; Hall, P.: Fractal analysis of surface roughness by using spatial data, J. roy. Statist. soc. B 61, 3-37 (1999) · Zbl 0927.62118 · doi:10.1111/1467-9868.00160
[12] Dimri, V. P.: Fractal behaviour of the Earth system, (2005)
[13] Erdogan, M. B.; Ostrovskii, I. V.: Analytic and asymptotic properties of generalized linnik’s probability density, J. math. Anal. appl. 217, 555-578 (1998) · Zbl 0893.60004 · doi:10.1006/jmaa.1997.5734
[14] Falconer, K. J.: Tangent fields and the local structure of random fields, J. theoret. Probab. 15, 731-750 (2002) · Zbl 1013.60028 · doi:10.1023/A:1016276016983
[15] Flandrin, P.; Borgnat, P.; Amblard, P. O.: From stationarity to self-similarity, and back: variations on the Lamperti transformation, Lecture notes in physics 621 (2003)
[16] Garoni, T. M.; Frankel, N. E.: Lévy flights: exact results and asymptotics beyond all orders, J. math. Phys. 43, 5090-5107 (2002) · Zbl 1060.60010 · doi:10.1063/1.1500423
[17] Gelfand, I. M.; Shilov, G. E.: Generalized functions, (1977)
[18] Genton, M. G.; Perrin, O.; Taqqu, M. S.: Self-similarity and Lamperti transformation for random fields, Stoch. models 23, No. 3, 397-411 (2007) · Zbl 1125.60046 · doi:10.1080/15326340701471018
[19] Gneiting, T.: Nonseparable, stationary covariance functions for space-time data, Jasa 97, 590-600 (2002) · Zbl 1073.62593 · doi:10.1198/016214502760047113
[20] T. Gneiting, M.G. Genton, P. Guttorp, Geostatistical space-time models, stationarity, separability, and full symmetry, Technical report No. 475, University of Washington, Washington, DC, 2005 · Zbl 1282.86019
[21] Gneiting, T.; Schlather, M.: Stochastic models that separate fractal dimension and the Hurst effect, SIAM rev. 46, 269-282 (2004) · Zbl 1062.60053 · doi:10.1137/S0036144501394387
[22] Gradshteyn, I. S.; Ryzhik, I. M.: Tables of integrals, series and products, (2000) · Zbl 0981.65001
[23] Herbin, E.: From N parameter fractional Brownian motions to N parameter multifractional Brownian motions, Rocky mountain J. Math. 36, No. 4, 1249-1284 (2006) · Zbl 1135.60020 · doi:10.1216/rmjm/1181069415 · euclid:rmjm/1181069415
[24] Houdre, C.; Villa, J.: An example of infinite dimensional quasi-helix, Contemporary math. 336, 195-201 (2003) · Zbl 1046.60033
[25] Istas, J.; Lang, G.: Quadratic variations and estimation of local holder index of a Gaussian process, Ann. inst. Henri Poincarè 33, 407-436 (1997) · Zbl 0882.60032 · doi:10.1016/S0246-0203(97)80099-4 · numdam:AIHPB_1997__33_4_407_0
[26] Kamont, A.: On the fractional anisotropic Wiener field, Prob. math. Statist. 16, 85-98 (1996) · Zbl 0857.60046
[27] J.T. Kent, A.T.A. Wood, Estimating fractal dimension of a locally self-similar Gaussian process by using increments, Statistics Research Report SRR 034--95, Centre for Mathematics and its Applications, Austalia National University, Canberra (1995); J. R. Statist. Soc. B 59, 1997, pp. 679--699
[28] Korevaar, J.: Tauberian theory: A century of developments, (2004) · Zbl 1056.40002
[29] Kotz, S.; Ostrovskii, I. V.; Hayfavi, A.: Analytic and asymptotic properties of linnik’s probability density I, II, J. math. Anal. appl. 193, 353-371 (1995) · Zbl 0831.60020 · doi:10.1006/jmaa.1995.1240
[30] Kotz, S.; Kozubowski, T. J.; Podgorski, K.: The Laplace distribution and generalizations, (2001) · Zbl 0977.62003
[31] Kyriakidis, P. C.; Journel, A. G.: Geostatistical space-time models: A review, Math. geology 31, 651-684 (1999) · Zbl 0970.86013 · doi:10.1023/A:1007528426688
[32] Lamperti, J. W.: Semi-stable stochastic processes, Trans. amer. Math. soc. 104, 62-78 (1962) · Zbl 0286.60017 · doi:10.2307/1993933
[33] Lang, G.; Roueff, F.: Semi-parametric estimation of the holder exponent of a stationary Gaussian process with minimax rates, Stat. inference stoch. Processes 4, 283-306 (2001) · Zbl 1008.62081 · doi:10.1023/A:1012227325436
[34] Leonenko, N. N.; Olenko, A. Ya.: Tauberian and abelian theorems for correlation function of a homogeneous isotropic random field, Ukrainain. math. J. 43, 1652-1664 (1991) · Zbl 0753.60048 · doi:10.1007/BF01066693
[35] Leonenko, N. N.: Limit theorems for random fields with singular spectrum, (1999) · Zbl 0963.60048
[36] Lim, S. C.; Muniandy, S. M.: Generalized Ornstein--Uhlenbeck processes and associated self-similar processes, J. phys. A: math. Gen. 36, 3961-3982 (2003) · Zbl 1083.60029 · doi:10.1088/0305-4470/36/14/303
[37] Lim, S. C.; Li, Ming: Generalized Cauchy process and its application to relaxation phenomena, J. phys. A: math. Gen. 39, 2935-2951 (2006) · Zbl 1090.82013 · doi:10.1088/0305-4470/39/12/005
[38] S.C. Lim, L.P. Teo, Fractional oscillator process with two indices, Preprint arXiv: 0804.3906, 2008 · Zbl 1156.82010
[39] Mateu, J.; Porcu, E.; Christakos, G.; Bevilacqua, M.: Fitting negative spatial covariances to geothermal field temperatures in nea kessani (Greece), Envoronmetrics 18, 759-773 (2007)
[40] Morariu, V.; Craciun, C.; Neamtu, S.; Iarinca, L.; Mihali, C.: A fractal and long-range correlation analysis of plant nucleus ultrastructure, Romanian J. Biophys. 16, 243-252 (2006)
[41] Ostrovskii, I. V.: Analytic and asymptotic properties of multivariate linnik’s distribution, Math. phys. Anal. geom. 2, 436-455 (1995) · Zbl 0849.60012
[42] Palasantzas, G.; De Hosson, J. Th.M.: Effect of roughness on the conductivity of semiconducting thin films/quantum wells with double rough boundaries, J. appl. Phys. 93, 320-324 (2003)
[43] C. Park, et al. Long range dependence analysis of internet traffic, Preprint, 2004
[44] R.F. Peltier, J.L. Vehel, Multifractional Brownian motion: Definition and preliminary results, INRIA Report 2645 (1995)
[45] Sahoo, N. K.; Thakur, S.; Tokas, R. B.: Fractals and superstructures in gadolinia thin film morphology: influence of process variables on their characteristic parameters, Thin solid films 503, 85-95 (2006)
[46] Samorodnitsky, G.; Taqqu, M.: Stable non-Gaussian random processes, (1994) · Zbl 0925.60027
[47] Stein, M. L.: Space-time covariance function, Jasa 100, 310-321 (2005) · Zbl 1117.62431 · doi:10.1198/016214504000000854 · http://masetto.asa.catchword.org/vl=1861397/cl=21/nw=1/rpsv/cw/asa/01621459/v100n469/s34/p310
[48] Stein, M. L.: Seasonal variations in the spatial-temporal dependence of total column ozone, Envirometrics 18, 71-86 (2007)
[49] Tscheschel, A.; Lacayo, J.; Stoyan, D.: Statistical characterization of TEM images of silics-filled rubber, J. microsc. 217, 75-82 (2005)
[50] Wood, A. T. A.; Chan, G.: Increment-based estimators of fractal dimension for two-dimensional surface data, Stat. sinica 10, 343-376 (1994) · Zbl 0963.62090
[51] Y. Xiao, Sample path properties of anisotropic Gaussian random fields, unpublished, 2007. http://www.stt.msu.edu/xiaoyimin/AniGaussian3.pdf