×

On a generalized false discovery rate. (English) Zbl 1161.62041

Summary: The concept of \(k\)-FWER has received much attention lately as an appropriate error rate for multiple testing when one seeks to control at least \(k\) false rejections, for some fixed \(k\geq 1\). A less conservative notion, the \(k\)-FDR, has been introduced very recently by S. K. Sarkar [ibid. 34, No. 1, 394–415 (2006; Zbl 1091.62060)], generalizing the false discovery rate of Y. Benjamini and Y. Hochberg [J. R. Stat. Soc., Ser. B 57, No. 1, 289–300 (1995; Zbl 0809.62014)]. We bring newer insight to the \(k\)-FDR considering a mixture model involving independent \(p\)-values before motivating the developments of some new procedures that control it. We prove the \(k\)-FDR control of the proposed methods under a slightly weaker condition than in the mixture model. We provide numerical evidence of the proposed methods’ superior power performance over some \(k\)-FWER and \(k\)-FDR methods. Finally, we apply our methods to a real data set.

MSC:

62J15 Paired and multiple comparisons; multiple testing
62H99 Multivariate analysis
65C60 Computational problems in statistics (MSC2010)
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289-300. JSTOR: · Zbl 0809.62014
[2] Benjamini, Y., Krieger, A. M. and Yekutieli, D. (2006). Adaptive linear step-up false discovery rate controlling procedures. Biometrika 93 491-507. · Zbl 1108.62069
[3] Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29 1165-1188. · Zbl 1041.62061
[4] Block, H. W., Savits, T. H. and Shaked, M. (1985). A concept of negative dependence using stochastic ordering. Statist. Probab. Lett. 3 81-86. · Zbl 0579.60005
[5] Dudoit, S., van der Laan, M. and Pollard, K. (2004). Multiple testing: Part I. Single-step procedures for control of general type I error rates. Statist. Appl. Genet. Mol. Biol. 3 Article 13. · Zbl 1166.62338
[6] Guo, W. and Romano, J. P. (2007). A generalized Sidak-Holm procedure and control of generalized error rates under independence. Statist. Appl. Genet. Mol. Biol. 6 Article 3. · Zbl 1166.62316
[7] Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R., Meltzer, P., Gusterson, B., Esteller, M., Raffeld, M., Yakhini, Z., Ben-Dor, A., Dougherty, E., Kononen, J., Bubendorf, L., Fehrle, W., Pittaluga, S., Gruvberger, S., Loman, N., Johannsson, O., Olsson, H., Wilfond, B., Sauter, G., Kallioniemi, O., Borg, A. and Trent, J. (2001). Gene-expression profiles in hereditary breast cancer. New Eng. J. Med. 344 539-548.
[8] Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika 75 800-802. JSTOR: · Zbl 0661.62067
[9] Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6 65-70. · Zbl 0402.62058
[10] Jin, J. and Cai, T. (2007). Estimating the null and the proportion of nonnull effects in large-scale multiple comparisons. J. Amer. Statist. Assoc. 102 495-506. · Zbl 1172.62319
[11] Karlin, S. and Rinott, Y. (1980). Classes of orderings of measures and related correlation inequalities I: Multivariate totally positive distributions. J. Multivariate Anal. 10 467-498. · Zbl 0469.60006
[12] Korn, E., Troendle, T., McShane, L. and Simon, R. (2004). Controlling the number of false discoveries: Application to high-dimensional genomic data. J. Statist. Plann. Inference 124 379-398. · Zbl 1074.62070
[13] Lehmann, E. L. and Romano, J. P. (2005). Generalizations of the familywise error rate. Ann. Statist. 33 1138-1154. · Zbl 1072.62060
[14] Meinshausen, N. and Rice, J. (2006). Estimating the proportion of false null hypotheses among a large number of independently tested hypotheses. Ann. Statist. 34 373-393. · Zbl 1091.62059
[15] Romano, J. P. and Shaikh, A. M. (2006). Step-up procedures for control of generalizations of the familywise error rate. Ann. Statist. 34 1850-1873. · Zbl 1246.62172
[16] Romano, J. P. and Wolf, M. (2007). Control of generalized error rates in multiple testing. Ann. Statist. 35 1378-1408. · Zbl 1127.62063
[17] Sarkar, S. K. (2002). Some results on false discovery rate in stepwise multiple testing procedures. Ann. Statist. 30 239-257. · Zbl 1101.62349
[18] Sarkar, S. K. (2006). False discovery and false nondiscovery rates in single-step multiple testing procedures. Ann. Statist. 34 394-415. · Zbl 1091.62060
[19] Sarkar, S. K. (2007). Step-up procedures controlling generalized FWER and generalized FDR. Ann. Statist. 35 2405-2420. · Zbl 1129.62066
[20] Sarkar, S. K. (2008). Generalizing Simes’ test and Hochberg’s stepup procedure. Ann. Statist. 36 337-363. · Zbl 1247.62193
[21] Sarkar, S. K. (2008). Two-stage stepup procedures controlling FDR. J. Statist. Plann. Inference 138 1072-1084. · Zbl 1130.62069
[22] Sarkar, S. K. and Guo, W. (2006). Procedures controlling generalized false discovery rate. Available at http://astro.temple.edu/ sanat/reports.html.
[23] Storey, J. D. (2002). A direct approach to false discovery rates. J. Roy. Statist. Soc. Ser. B 64 479-498. JSTOR: · Zbl 1090.62073
[24] Storey, J. D., Taylor, J. E. and Siegmund, D. (2004). Strong control, conservative point estimation and simultaneous conservative consistency of false discovery rates: A unified approach. J. Roy. Statist. Soc. Ser. B 66 187-205. JSTOR: · Zbl 1061.62110
[25] Storey, J. D. and Tibshirani, R. (2003). Statistical significance for genomewide studies. Proc. Natl. Acad. Sci. USA 100 9440-9445. · Zbl 1130.62385
[26] Sun, W. and Cai, T. (2007). Oracle and adaptive compound decision rules for false discovery rate control. J. Amer. Statist. Assoc. 102 901-912. · Zbl 1469.62318
[27] van der Laan, M., Dodoit, S. and Pollard, K. (2004). Augmentation procedures for control of the generalized family-wise error rate and tail probabilities for the proportion of false positives. Stat. Appl. Genet. Mol. Biol. 3 Article 15. · Zbl 1166.62379
[28] Yekutieli, D. and Benjamini, Y. (1999). Resampling based false discovery rate controlling multiple testing procedure for correlated test statistics. J. Statist. Plann. Inference 82 171-196. · Zbl 1063.62563
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.