zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Common fixed points of new iterations for two asymptotically nonexpansive nonself-mappings in a Banach space. (English) Zbl 1161.65043
The main purpose of the paper is to study the following iteration scheme: $$ y_{n}=P(1-\beta_{n})x_{n}+\beta_{n}T_{2}(PT_{2})^{n-1}x_{n},\quad x_{n+1}=P(1-\alpha_{n})y_{n}+\alpha_{n}T_{1}(PT_{1})^{n-1}y_{n}, $$ where $X$ is a normed space, $C$ a convex nonempty subset $P:X\rightarrow C$ a nonexpensive retraction of $X$ onto $C$ , $T_{1}, T_{2}: C \rightarrow X $ given mappings. The last two theorems yield conditions under which the sequences are weakly respectively strongly convergent.

65J15Equations with nonlinear operators (numerical methods)
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
47H09Mappings defined by “shrinking” properties
46B20Geometry and structure of normed linear spaces
Full Text: DOI
[1] Chang, S. S.; Cho, Y. J.; Zhou, H.: Demi-closed principle and weak convergence problems for asymptotically nonexpansive mappings, J. korean math. Soc. 38, 1245-1260 (2001) · Zbl 1020.47059
[2] Chidume, C. E.; Ofoedu, E. U.; Zegeye, H.: Strong and weak convergence theorems for asymptotically nonexpansive mappings, J. math. Anal. appl. 280, 364-374 (2003) · Zbl 1057.47071 · doi:10.1016/S0022-247X(03)00061-1
[3] Goebel, K.; Kirk, W. A.: A fixed point theorem for asymptotically nonexpansive mappings, Proc. amer. Math. soc. 35, 171-174 (1972) · Zbl 0256.47045 · doi:10.2307/2038462
[4] Ishikawa, S.: Fixed points and iteration of nonexpansive mappings of in a Banach spaces, Proc. amer. Math. soc. 73, 61-71 (1976) · Zbl 0352.47024 · doi:10.2307/2042038
[5] Jung, J. S.; Kim, S. S.: Strong convergence theorems for nonexpansive nonself-mappings in Banach spaces, Nonlinear anal. 33, 321-329 (1998) · Zbl 0988.47033 · doi:10.1016/S0362-546X(97)00526-9
[6] Khan, S. H.; Fukhar-Ud-Din, H.: Weak and strong convergence of a scheme with errors for two nonexpansive mappings, Nonlinear anal. 61, 1295-1301 (2005) · Zbl 1086.47050 · doi:10.1016/j.na.2005.01.081
[7] Fukhar-Ud-Din, H.; Khan, S. H.: Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications, J. math. Anal. appl. 328, 821-829 (2007) · Zbl 1113.47055 · doi:10.1016/j.jmaa.2006.05.068
[8] Maiti, M.; Ghosh, M. K.: Approximating fixed points by Ishikawa iterates, Bull. austral. Math. soc. 40, 113-117 (1989) · Zbl 0667.47030 · doi:10.1017/S0004972700003555
[9] Matsushita, S. Y.; Kuroiwa, D.: Strong convergence of averaging iteration of nonexpansive nonself-mappings, J. math. Anal. appl. 294, 206-214 (2004) · Zbl 1070.47056 · doi:10.1016/j.jmaa.2004.02.010
[10] Noor, M. Aslam: New approximation schemes for general variational inequalities, J. math. Anal. appl. 251, 217-229 (2000) · Zbl 0964.49007 · doi:10.1006/jmaa.2000.7042
[11] Opial, Z.: Weak convergence of successive approximations for nonexpansive mappings, Bull. amer. Math. soc. 73, 591-597 (1967) · Zbl 0179.19902 · doi:10.1090/S0002-9904-1967-11761-0
[12] Osilike, M. O.; Udomene, A.: Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. comput. Modelling 32, 1181-1191 (2000) · Zbl 0971.47038 · doi:10.1016/S0895-7177(00)00199-0
[13] Osilike, M. O.; Udomene, A.: Demiclosedness principle and convergence theorems for strictly pseudocontractive mappings of Browder--petryshyn type, J. math. Anal. appl. 256, 431-445 (2001) · Zbl 1009.47067 · doi:10.1006/jmaa.2000.7257
[14] Reich, S.: Weak convergence theorems for nonexpansive mappings in Banach spaces, J. math. Anal. appl. 67, 274-276 (1979) · Zbl 0423.47026 · doi:10.1016/0022-247X(79)90024-6
[15] Rhoades, B. E.: Fixed point iterations for certain nonlinear mappings, J. math. Anal. appl. 183, 118-120 (1994) · Zbl 0807.47045 · doi:10.1006/jmaa.1994.1135
[16] Schu, J.: Iterative construction of a fixed points of asymptotically nonexpansive mappings, J. math. Anal. appl. 158, 407-413 (1991) · Zbl 0734.47036 · doi:10.1016/0022-247X(91)90245-U
[17] Schu, J.: Weak and strong convergence to fixed points of asymptotically nonexpansive mappings, Bull. austral. Math. soc. 43, 153-159 (1991) · Zbl 0709.47051 · doi:10.1017/S0004972700028884
[18] Shahzad, N.: Approximating fixed points of non-self nonexpansive mappings in Banach spaces, Nonlinear anal. 61, 1031-1039 (2005) · Zbl 1089.47058 · doi:10.1016/j.na.2005.01.092
[19] Suantai, S.: Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings, J. math. Anal. appl. 311, 506-517 (2005) · Zbl 1086.47057 · doi:10.1016/j.jmaa.2005.03.002
[20] Takahashi, W.; Kim, G. E.: Strong convergence of approximants to fixed points of nonexpansive nonself-mappings, Nonlinear anal. 32, 447-454 (1998) · Zbl 0947.47049 · doi:10.1016/S0362-546X(97)00482-3
[21] Tan, K. K.; Xu, H. K.: Approximating fixed points of nonexpansive mapping by the Ishikawa iteration process, J. math. Anal. appl. 178, 301-308 (1993) · Zbl 0895.47048 · doi:10.1006/jmaa.1993.1309
[22] Wang, L.: Strong and weak convergence theorems for common fixed points of nonself asymptotically nonexpansive mappings, J. math. Anal. appl. 323, 550-557 (2006) · Zbl 1126.47055 · doi:10.1016/j.jmaa.2005.10.062
[23] Xu, H. K.; Yin, X. M.: Strong convergence theorems for nonexpansive nonself-mappings, Nonlinear anal. 242, 23-228 (1995) · Zbl 0826.47038 · doi:10.1016/0362-546X(94)E0059-P