×

zbMATH — the first resource for mathematics

Convergence results of the fictitious domain method for a mixed formulation of the wave equation with a Neumann boundary condition. (English) Zbl 1161.65071
Summary: The problem of modeling acoustic waves scattered by an object with Neumann boundary condition is considered. The boundary condition is taken into account by means of the fictitious domain method, yielding a first order in time mixed variational formulation for the problem. The resulting system is discretized with two families of mixed finite elements that are compatible with mass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always correctly taken into account when the first family of mixed finite elements is used. We, therefore, introduce the second family of mixed finite elements for which a theoretical convergence analysis is presented and error estimates are obtained. A numerical study of the convergence is also considered for a particular object geometry which shows that our theoretical error estimates are optimal.

MSC:
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
74S05 Finite element methods applied to problems in solid mechanics
35L05 Wave equation
76Q05 Hydro- and aero-acoustics
76M10 Finite element methods applied to problems in fluid mechanics
PDF BibTeX Cite
Full Text: DOI Link EuDML
References:
[1] I. Babuška, The finite element method with lagrangian multipliers. Numer. Math. 20 (1973) 179-192. Zbl0258.65108 MR359352 · Zbl 0258.65108
[2] E. Bécache, P. Joly and C. Tsogka, Éléments finis mixtes et condensation de masse en élastodynamique linéaire, (i) Construction. C. R. Acad. Sci. Paris Sér. I 325 (1997) 545-550. Zbl0895.73064 MR1692323 · Zbl 0895.73064
[3] E. Bécache, P. Joly and C. Tsogka, An analysis of new mixed finite elements for the approximation of wave propagation problems. SINUM 37 (2000) 1053-1084. Zbl0958.65102 MR1756415 · Zbl 0958.65102
[4] E. Bécache, P. Joly and C. Tsogka, Fictitious domains, mixed finite elements and perfectly matched layers for 2d elastic wave propagation. J. Comp. Acoust. 9 (2001) 1175-1203. MR1871063 · Zbl 1360.74156
[5] E. Bécache, P. Joly and C. Tsogka, A new family of mixed finite elements for the linear elastodynamic problem. SINUM 39 (2002) 2109-2132. Zbl1032.74049 MR1897952 · Zbl 1032.74049
[6] E. Bécache, A. Chaigne, G. Derveaux and P. Joly, Time-domain simulation of a guitar: Model and method. J. Acoust. Soc. Am. 6 (2003) 3368-3383. · Zbl 1047.76115
[7] E. Bécache, J. Rodríguez and C. Tsogka, On the convergence of the fictitious domain method for wave equation problems. Technical Report RR-5802, INRIA (2006). · Zbl 1161.65071
[8] E. Bécache, J. Rodríguez and C. Tsogka, A fictitious domain method with mixed finite elements for elastodynamics. SIAM J. Sci. Comput. 29 (2007) 1244-1267. Zblpre05288533 MR2318705 · Zbl 1359.74394
[9] J.P. Bérenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comp. Phys. 114 (1994) 185-200. Zbl0814.65129 MR1294924 · Zbl 0814.65129
[10] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods. Springer-Verlag, New York (1991). Zbl0788.73002 MR1115205 · Zbl 0788.73002
[11] F. Collino and C. Tsogka, Application of the PML absorbing layer model to the linear elastodynamic problem in anisotropic heteregeneous media. Geophysics 66 (2001) 294-307.
[12] F. Collino, P. Joly and F. Millot, Fictitious domain method for unsteady problems: Application to electromagnetic scattering. J. Comput. Phys. 138 (1997) 907-938. Zbl1126.78311 MR1607498 · Zbl 1126.78311
[13] S. Garcès, Application des méthodes de domaines fictifs à la modélisation des structures rayonnantes tridimensionnelles. Ph.D. Thesis, SupAero, France (1998).
[14] V. Girault and R. Glowinski, Error analysis of a fictitious domain method applied to a Dirichlet problem. Japan J. Indust. Appl. Math. 12 (1995) 487-514. Zbl0843.65076 MR1356667 · Zbl 0843.65076
[15] V. Girault and P.-A. Raviart, Finite element methods for Navier-Stokes equations - Theory and algorithms, Springer Series in Computational Mathematics 5. Springer-Verlag, Berlin (1986). Zbl0585.65077 MR851383 · Zbl 0585.65077
[16] R. Glowinski, Numerical methods for fluids, Part 3, Chapter 8, in Handbook of Numerical Analysis IX, P.G. Ciarlet and J.L. Lions Eds., North-Holland, Amsterdam (2003) x+1176. Zbl1020.00003 MR2009814 · Zbl 1020.00003
[17] R. Glowinski and Y. Kuznetsov, On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method. C. R. Acad. Sci. Paris Sér. I Math. 327 (1998) 693-698. Zbl1005.65127 MR1652674 · Zbl 1005.65127
[18] R. Glowinski, T.W. Pan and J. Periaux, A fictitious domain method for Dirichlet problem and applications. Comput. Methods Appl. Mech. Engrg. 111 (1994) 283-303. Zbl0845.73078 MR1259864 · Zbl 0845.73078
[19] P. Grisvard, Singularities in boundary value problems. Springer-Verlag, Masson (1992). Zbl0766.35001 MR1173209 · Zbl 0766.35001
[20] E. Heikkola, Y.A. Kuznetsov, P. Neittaanmäki and J. Toivanen, Fictitious domain methods for the numerical solution of two-dimensional scattering problems. J. Comput. Phys. 145 (1998) 89-109. Zbl0909.65119 MR1640154 · Zbl 0909.65119
[21] E. Heikkola, T. Rossi and J. Toivanen, A domain embedding method for scattering problems with an absorbing boundary or a perfectly matched layer. J. Comput. Acoust. 11 (2003) 159-174. MR2013686 · Zbl 1035.65127
[22] E. Hille and R.S. Phillips, Functional analysis and semigroups, Colloquium Publications 31. Rev. edn., Providence, R.I., American Mathematical Society (1957). Zbl0078.10004 MR89373 · Zbl 0078.10004
[23] P. Joly and L. Rhaouti. Analyse numérique - Domaines fictifs, éléments finis H(div) et condition de Neumann : le problème de la condition inf-sup. C. R. Acad. Sci. Paris Sér. I Math. 328 (1999) 1225-1230. Zbl0931.65112 MR1701390 · Zbl 0931.65112
[24] Yu.A. Kuznetsov, Fictitious component and domain decomposition methods for the solution of eigenvalue problems, in Computing methods in applied sciences and engineering VII (Versailles, 1985), North-Holland, Amsterdam (1986) 155-172. Zbl0677.65033 · Zbl 0677.65033
[25] J.C. Nédélec, A new family of mixed finite elements in \(\mathbb{R}^3\). Numer. Math. 50 (1986) 57-81. Zbl0625.65107 · Zbl 0625.65107
[26] L. Rhaouti, Domaines fictifs pour la modélisation d’un probème d’interaction fluide-structure : simulation de la timbale. Ph.D. Thesis, Paris IX, France (1999).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.