[1] |
Barreira, L.; Pesin, Y.: Lyapunov exponents and smooth ergodic theory. University lecture series 23 (2002) |

[2] |
Coppel, W. A.: Dichotomies in stability theory. Springer lecture notes in mathematics 629 (1978) · Zbl 0376.34001 |

[3] |
Cottet, G. H.; Koumoutsakos, P.: Vortex methods: theory and practice. (2000) · Zbl 1140.76002 |

[4] |
Coulliette, C.; Wiggins, S.: Intergyre transport in a wind-driven, quasigeostrophic double gyre: an application of lobe dynamics. Nonlinear process. Geophys. 7, 59-85 (2000) |

[5] |
Doerner, R.; Hübinger, B.; Martienssen, W.; Grossmann, A.; Thomae, S.: Stable manifolds and predictability of dynamical systems. Chaos solitons fractals 10, No. 11, 1759-1782 (1999) · Zbl 0982.37012 |

[6] |
Eldredge, J. D.; Colonius, T.; Leonard, A.: A vortex particle method for two-dimensional compressible flow. J. comput. Phys. 179, 371-399 (2002) · Zbl 1130.76393 |

[7] |
J.D. Eldredge, Efficient tools for the simulation of flapping wing flows, AIAA Paper 2005--0085 |

[8] |
Guckenheimer, J.; Holmes, P.: Nonlinear oscillations, dynamical systems and bifurcations of vector fields. AMS 42 (1983) · Zbl 0515.34001 |

[9] |
Haller, G.; Poje, A. C.: Finite-time transport in aperiodic flows. Physica D 119, 352-380 (2000) · Zbl 1194.76089 |

[10] |
Haller, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Chaos 10, No. 1, 99-108 (2000) · Zbl 0979.37012 |

[11] |
Haller, G.; Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147, 352-370 (2000) · Zbl 0970.76043 |

[12] |
Haller, G.: Distinguished material surfaces and coherent structures in 3d fluid flows. Physica D 149, 248-277 (2001) · Zbl 1015.76077 |

[13] |
Haller, G.: Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence. Phys. fluids A 13, 3368-3385 (2001) |

[14] |
Haller, G.: Lagrangian coherent structures from approximate velocity data. Phys. fluids A 14, 1851-1861 (2002) · Zbl 1185.76161 |

[15] |
Haller, G.: Exact theory of unsteady separation for two-dimensional flows. J. fluid mech. 512, 257-311 (2004) · Zbl 1066.76054 |

[16] |
Hartman, P.: Ordinary differential equations. (1973) · Zbl 0281.34001 |

[17] |
T. Inanc, S.C. Shadden, J.E. Marsden, Optimal trajectory generation in ocean flows, in: Proc. of 24th American Control Conference, Portland, USA, June 2005 |

[18] |
Jones, C. K. R.T.; Winkler, S.: Invariant manifolds and Lagrangian dynamics in the ocean and atmosphere. Handbook of dynamical systems II: Towards applications, 55-92 (2002) · Zbl 1039.86002 |

[19] |
Joseph, B.; Legras, B.: Relation between kinematic boundaries, stirring, and barriers for the antarctic polar vortex. J. atmospheric sci. 59, 1198-1212 (2002) |

[20] |
Koh, T. -Y.; Legras, B.: Hyperbolic lines and the stratospheric polar vortex. Chaos 12, 382-394 (2002) · Zbl 1080.86002 |

[21] |
F. Lekien, N. Leonard, Dynamically consistent Lagrangian coherent structures, in: American Institute of Physics: 8th Experimental Chaos Conference, vol. 742, 2004, pp. 132--139 |

[22] |
Lekien, F.; Marsden, J.: Tricubic interpolation in three dimensions. Internat. J. Numer. methods engrg. 63, No. 3, 455-471 (2005) · Zbl 1140.76423 |

[23] |
Lekien, F.; Coulliette, C.; Mariano, A. J.; Ryan, E. H.; Shay, L. K.; Haller, G.; Marsden, J. E.: Pollution release tied to invariant manifolds: A case study for the coast of florida. Physica D 210, No. 1--2, 1-20 (2005) · Zbl 1149.86302 |

[24] |
F. Lekien, C. Coulliette, G. Haller, J. Paduan, J.E. Marsden, Optimal pollution release in Monterey Bay based on nonlinear analysis of coastal radar data, Environ. Sci. Technol. 2005 (under review) |

[25] |
Liapunov, A. M.: Stability of motion. (1966) |

[26] |
Malhotra, N.; Mezić, I.; Wiggins, S.: Patchiness: A new diagnostic for Lagrangian trajectory analysis in time-dependent fluid flows. Internat. J. Bifur. chaos 8, 1073-1094 (1998) · Zbl 0962.76537 |

[27] |
Mancho, A. M.; Small, S.; Wiggins, S.; Ide, K.: Computation of stable and unstable manifold of hyperbolic trajectories in two-dimensional, aperiodically time-dependent vector fields. Physica D 182, 188-222 (2003) · Zbl 1030.37020 |

[28] |
Marsden, J. E.; Hoffman, M. J.: Elementary classical analysis. (1993) · Zbl 0777.26001 |

[29] |
Mezic, I.; Wiggins, S.: A method for visualization of invariant sets of dynamical systems based on the ergodic partition. Chaos 9, No. 1, 213-218 (1999) · Zbl 0987.37080 |

[30] |
O’neill, B.: Elementary differential geometry. (1997) |

[31] |
Oseledec, V. I.: A multiplicative ergodic theorem: ljapunov characteristic numbers for dynamical systems. Trans. Moscow math. Soc. 19, 197-231 (1968) |

[32] |
Ottino, J. M.: The kinematics of mixing: stretching, chaos, and transport. (1989) · Zbl 0721.76015 |

[33] |
Peters, H.; Shay, L. K.; Mariano, A. J.; Cook, T. M.: Current variability on a narrow shelf with large ambient vorticity. J. geophys. Res.-oceans 107, No. C8 (2002) |

[34] |
Pierrehumbert, R. T.: Large-scale horizontal mixing in planetary atmospheres. Phys. fluids A 3, No. 5, 1250-1260 (1991) |

[35] |
Pierrehumbert, R. T.; Yang, H.: Global chaotic mixing on isentropic surfaces. J. atmospheric sci. 50, 2462-2480 (1993) |

[36] |
Poje, A. C.; Haller, G.: Geometry of cross-stream mixing in a double-gyre ocean model. J. phys. Oceanogr. 29, 1649-1665 (1999) |

[37] |
Prandle, D.: The fine-structure of nearshore tidal and residual circulations revealed by HF radar surface current measurements. J. phys. Oceanogr. 17, 231-245 (1987) |

[38] |
Provenzale, A.: Transport by coherent barotropic vortices. Annu. rev. Fluid mech. 31, 55-93 (1999) |

[39] |
Rogerson, A.; Miller, P. D.; Pratt, L. J.; Jones, C. K. R.T.J.: Lagrangian motion and fluid exchange in a barotropic meandering jet. J. phys. Oceanogr. 29, No. 10, 2635-2655 (1999) |

[40] |
Rom-Kedar, V.: Transport rates of a class of two-dimensional maps and flows. Physica D 43, 229-268 (1990) · Zbl 0706.58065 |

[41] |
Rom-Kedar, V.; Leonard, A.; Wiggins, S.: An analytical study of transport, mixing, and chaos in unsteady vortical flow. J. fluid mech. 214, 347-394 (1990) · Zbl 0698.76028 |

[42] |
Rom-Kedar, V.; Wiggins, S.: Transport in two-dimensional maps: concepts, examples, and a comparison of the theory of rom-kedar and wiggins with the Markov model of mackay, meiss, ott, and percival. Physica D 51, 248-266 (1991) · Zbl 0741.76077 |

[43] |
Shay, H. C.; Graber, L. K.; Ross, D. B.; Chapman, R. D.: Mesoscale ocean surface current structure detected by HF radar. J. atmos. Ocean. technol. 12, 881-900 (1995) |

[44] |
Shay, L. K.; Cook, T. M.; Haus, B. K.; Martinez, J.; Peters, H.; Mariano, A. J.; An, P. E.; Smith, S.; Soloviev, A.; Weisberg, R.; Luther, M.: VHF radar detects oceanic submesoscale vortex along the Florida coast. EOS trans. Am. geophys. Union 81, No. 19, 209-213 (2000) |

[45] |
Shay, L. K.; Cook, T. M.; Peters, H.; Mariano, A. J.; Weisberg, R.; An, P. E.; Soloviev, A.; Luther, M.: Very high frequency radar mapping of the surface currents. IEEE J. Oceanogr. engin. 27, 155-169 (2002) |

[46] |
Stewart, R. H.; Joy, J. W.: HF radio measurements of surface currents. Deep-sea res. 21, 1039-1049 (1974) |

[47] |
Truesdell, C. A.: The kinematics of vorticity. (1954) · Zbl 0056.18606 |

[48] |
Verhulst, F.: Nonlinear differential equations and dynamical systems. (1996) · Zbl 0854.34002 |

[49] |
Von Hardenberg, J.; Fraedrich, K.; Lunkeit, F.; Provenzale, A.: Transient chaotic mixing during a baroclinic life cycle. Chaos 10, No. 1, 122-134 (2000) · Zbl 1072.86507 |

[50] |
Voth, G. A.; Haller, G.; Gollub, J. P.: Experimental measurements of stretching fields in fluid mixing. Phys. rev. Lett. 88, No. 25, 254501.1-254501.4 (2002) |

[51] |
K.C. Wang, On current controversy of unsteady separation, in: Symposium on Numerical and Physical Aspects of Aerodynamic Flows, Long Beach, CA, January 19--21, 1981 |

[52] |
Wiggins, S.: Chaotic transport in dynamical systems. (1992) · Zbl 0747.34028 |

[53] |
Wiggins, S.: The dynamical systems approach to Lagrangian transport in ocean flows. Annu. rev. Fluid mech. 37, 295-338 (2005) · Zbl 1117.76058 |

[54] |
Yuan, G. C.; Pratt, L. J.; Jones, C. K. R.T: Barrier destruction and Lagrangian predictability at depth in a meandering jet. Dyn. atmos. Oceans 35, No. 1, 41-61 (2002) |