×

\(L^{2}\) series solution of the relativistic Dirac-Morse problem for all energies. (English) Zbl 1161.81338

Summary: We obtain analytic solutions for the one-dimensional Dirac equation with the Morse potential as an infinite series of square integrable functions. These solutions are for all energies, the discrete as well as the continuous. The elements of the spinor basis are written in terms of the confluent hypergeometric functions. They are chosen such that the matrix representation of the Dirac-Morse operator for continuous spectrum (i.e., for scattering energies larger than the rest mass) is tridiagonal. Consequently, the wave equation results in a three-term recursion relation for the expansion coefficients of the wavefunction. The solution of this recursion relation is obtained in terms of the continuous dual Hahn orthogonal polynomials. On the other hand, for the discrete spectrum (i.e., for bound states with energies less than the rest mass) the spinor wave functions result in a diagonal matrix representation for the Dirac-Morse Hamiltonian.

MSC:

81Q05 Closed and approximate solutions to the Schrödinger, Dirac, Klein-Gordon and other equations of quantum mechanics
33C90 Applications of hypergeometric functions
PDF BibTeX XML Cite
Full Text: DOI arXiv

References:

[1] Natanzon, G.A.; Gendenshtein, L.E.; Cooper, F.; Ginocchi, J.N.; Khare, A.; Dutt, R.; Khare, A.; Sukhatme, U.P.; Dutt, R.; Khare, A.; Sukhatme, U.P.; Lévai, G.; Lévai, G., Theor. math. phys., Teor. mat. fiz., JETP lett., Pis’ma zh. eksp. teor. fiz., Phys. rev. D, Am. J. phys., Am. J. phys., J. phys. A, J. phys. A, 27, 3809, (1994), (in Russian)
[2] de Souza-Dutra, A.; Nag, N.; Roychoudhury, R.; Varshni, Y.P.; Dutt, R.; Khare, A.; Varshni, Y.P.; Grosche, C.; Grosche, C.; Lévai, G.; Roy, P.; Junker, G.; Roy, P.; Roychoudhury, R.; Roy, P.; Zonjil, M.; Lévai, G., Phys. rev. A, Phys. rev. A, J. phys. A, J. phys. A, J. phys. A, Phys. lett. A, Ann. phys. (N.Y.), J. math. phys., 42, 1996, (2001)
[3] Turbiner, A.V.; Shifman, M.A.; Adhikari, R.; Dutt, R.; Varshni, Y.; Adhikari, R.; Dutt, R.; Varshni, Y.; Roychoudhury, R.; Varshni, Y.P.; Sengupta, M.; Salem, L.D.; Montemayor, R.; Lucht, M.W.; Jarvis, P.D.; Ushveridze, A.G., Quasi-exactly solvable models in quantum mechanics, Commun. math. phys., Int. J. mod. phys. A, Phys. lett. A, J. math. phys., Phys. rev. A, Phys. rev. A, Phys. rev. A, 47, 817, (1994), IOP Bristol
[4] Alhaidari, A.D.; Alhaidari, A.D.; Alhaidari, A.D.; Alhaidari, A.D.; Guo, J.-Y.; Fang, X.Z.; Xu, F.-X.; Guo, J.-Y.; Meng, J.; Xu, F.-X.; Alhaidari, A.D., Phys. rev. lett., Phys. rev. lett., J. phys. A, J. phys. A, Phys. rev. A, Chin. phys. lett., Int. J. mod. phys. A, 18, 4955, (2003)
[5] Heller, E.J.; Yamani, H.A.; Yamani, H.A.; Fishman, L., (), 16, 410, (1975)
[6] Lane, A.M.; Thomas, R.G.; Lane, A.M.; Robson, D., Rev. mod. phys., Phys. rev., 178, 1715, (1969)
[7] Hazi, A.U.; Taylor, H.S., Phys. rev. A, 2, 1109, (1970)
[8] Murtaugh, T.S.; Reinhardt, W.P.; Reinhardt, W.P.; Oxtoby, D.W.; Rescigno, T.N.; Heller, E.J.; Rescigno, T.N.; Reinhardt, W.P., Chem. phys. lett., Phys. rev. lett., Phys. rev. A, 8, 2946, (1973)
[9] Broad, J.T., Phys. rev. A, 26, 3078, (1982)
[10] Ojha, P.C., J. phys. A, 21, 875, (1988)
[11] Yamani, H.A.; Reinhardt, W.P., Phys. rev. A, 11, 1144, (1975)
[12] A.D. Alhaidari, Ann. Phys. (N.Y.), in press
[13] R. Koekoek, R.F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, report No. 98-17, Delft University of Technology, Delft, 1998, pp. 37-38
[14] Witten, E.; Cooper, F.; Freedman, B.; Sukumar, C.V.; Arai, A.; Cooper, F.; Khare, A.; Sukhatme, U., Nucl. phys. B, Ann. phys. (N.Y.), J. phys. A, J. math. phys., Phys. rep., 251, 267, (1995), See, for example
[15] Morse, P.M.; Flügge, S., Practical quantum mechanics, Phys. rev., 34, 57, (1974), Springer-Verlag Berlin, p. 182
[16] Magnus, W.; Oberhettinger, F.; Soni, R.P.; Chihara, T.S.; Szegö, G.; Askey, R.; Ismail, M., Orthogonal polynomials, Mem. amer. math. soc., 49, 300, (1984), American Mathematical Society Providence, RI, Examples of textbooks and monographs on special functions and orthogonal polynomials are
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.