zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Reduced-order modeling of the upper tropical Pacific ocean model using proper orthogonal decomposition. (English) Zbl 1161.86002
The paper applies the proper orthogonal decomposition (POD) to reduced order modeling of a large-scale upper ocean circulation in the tropic Pacific domain. The authors construct different POD models with different choices of snapshots and different number of POD basis functions, compare the results from these different POD models with that of the original model, and finally conclude that the POD reduced modeling can be a powerful tool for various large-scale applications such as four-dimensional variational data assimilation.

86-08Computational methods (geophysics)
86A05Hydrology, hydrography, oceanography
86A10Meteorology and atmospheric physics
Full Text: DOI
[1] Karhunen, K.: Zur spektraltheorie stochastischer prozesse. Ann. acad. Sci. fennicae 37 (1946) · Zbl 0063.03144
[2] Loève, M.: Fonctions aleatoires de second ordre. Compte rend. Acad. sci., Paris 220 (1945)
[3] Ma, X.; Karniadaks, G.: A low-dimensional model for simulating three-dimensional cylinder flow. J. fluid mech. 458, 181-190 (2002) · Zbl 1001.76043
[4] Holmes, P.; Lumley, J. L.; Berkooz, G.; Turbulence: Coherent structures, dynamical systems and symmetry, Cambridge monographs on mechanics. (1996) · Zbl 0890.76001
[5] Lopez, C.; Garcia-Herandez, E.: Low-dimensional dynamical system model for observed coherent structures in ocean satellite data. Physica A 328, 233-250 (2003)
[6] L. Sirovich, Turbulence and the dynamics of coherent structures, Parts I -- III., Q. Appl. Math. XLV (3), 561-590. · Zbl 0676.76047
[7] Atwell, J. A.; Borggaard, J. T.; King, B. B.: Reduced order controllers for Burgers equation with a nonlinear observer. Int. J. Appl. math. Comput. sci. 11, 1311-1330 (2001) · Zbl 1051.93045
[8] Chambers, D. H.; Adrian, R. J.; Moin, P.; Stewart, D. S.; Sung, H. J.: Karhunen-Loève expansion of Burgers model of turbulence. Phys. fluids 31, 2573-2582 (1988)
[9] Kunisch, K.; Volkwein, S.: Control of the Burgers equation by a reduced order approach using proper orthogonal decomposition. J. optimization theory appl. 102, No. 2, 345-371 (1999) · Zbl 0949.93039
[10] Sirovich, L.: Chaotic dynamics of coherent structures. Physica D 37, 126-145 (1989)
[11] K. Afanasiev and M. Hinze, Adaptive control of a wake flow using proper orthogonal decomposition, In Lect. Notes Pure Appl. Math., Volume 216, pp. 317 -- 332, (2001). · Zbl 1013.76028
[12] K. Afanasiev and M. Hinze, Entwicklung von Feedback-Controllern zur Beeinflussung abgelöster Strömungen. Abschlussbericht des Teilprojekts C3 des Sonderforschungsbereichs TP A4, SFB 557, TU Berlin, (2000).
[13] Kepler, G. M.; Tran, H. T.; Banks, H. T.: Reduced order model compensator control of species transport in a CVD reactor. Optimal control application & methods 21, 143-160 (2000) · Zbl 1069.49508
[14] Bangia, A. K.; Batcho, P. F.; Kevrekidis, I. G.; Karniadakis, G. E.: Unsteady two-dimensional flows in complex geometries: comparative bifurcation studies with global eigenfunction expansions. SIAM J. Sci. comput. 18, No. 3, 775-805 (1997) · Zbl 0873.58058
[15] Berkooz, G.; Holmes, P.; Lumley, J.: The proper orthogonal decomposition in the analysis of turbulent flows. Ann. rev. Fluid mech. 25, 777-786 (1993)
[16] Ly, H. V.; Tran, H. T.: Proper orthogonal decomposition for flow calculations and optimal control in a horizontal CVD reactor. Quarterly of applied mathematics 60, No. 4, 631-656 (2002) · Zbl 1146.76631
[17] Ravindran, S. S.: A reduced-order approach for optimal control of fluids using proper orthogonal decomposition. International journal for numerical methods in fluids 34, No. 5, 425-448 (2000) · Zbl 1005.76020
[18] Banks, H. T.; Joyner, M. L.; Winchesky, B.; Winfree, W. P.: Nondestructive evaluation using a reduced-order computational methodology. Inverse problems 16, 1-17 (2000) · Zbl 0960.35107
[19] Caraballo, E.; Saminny, M.; Scott, J.; Narayan, S.; Debonis, J.: Application of proper orthogonal decomposition to a supersonic axisymmetric jet. Aiaa j. 41, 866-877 (2003)
[20] Ravindran, S. S.: Adaptive reduced-order controllers for a thermal flow system using proper orthogonal decomposition. SIAM journal on scientific computing 23, No. 6, 1924-1942 (2002) · Zbl 1026.76015
[21] Balsa-Canto, E.; Alonso, A.; Banga, J.: Novel, efficient and reliable method for thermal process design and optimization. Part I: theory. Part II: Applications. J. food process. Pres. 52, 227-247 (2002)
[22] Kikuchi, H.; Tamura, Y.; Ueda, H.; Hibi, K.: Dynamic wind pressures acting on a tall building model-proper orthogonal decomposition. J. wind. Eng. ind. Aerod. 71, 631-646 (1997)
[23] Gunzburger, M. D.: Perspectives in flow control and optimization. Society for industrial and applied mathematics, 261 (2003) · Zbl 1088.93001
[24] M.D. Gunzburger, Reduced-order Modeling, data compression, and the design of experiments, Second DOE Workshop on Multiscale Mathematics, July 20 -- 22, Broomfield, Colorado, (2004).
[25] B. Uzunoglu, S. J. Fletcher, I.M. Navon and M. Zupanski, Adaptive ensemble size reduction, Quarterly Journal of the Royal Meteorological Society, (submitted).(2005).
[26] Courtier, P.; Thépaut, J. -N.; Hollingsworth, A.: A strategy for operational implementation of 4D-var, using an incremental approach. Quarterly journal of the royal meteorological society 120, 1367-1388 (1994)
[27] Griewank, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation frontiers in applied mathematics. (2000) · Zbl 0958.65028
[28] Li, Z.; Navon, I. M.; Zhu, Y. Y.: Performance of 4D-var with different strategies for the use of adjoint physics with the FSU global spectral model. Monthly weather review 128, No. 3, 668-688 (2000)
[29] P. Gauthier, Operational implementation of variational data assimilation. In Data Assimilation for the Earth System, NATO Science Series IV. Earth and Environmental Sciences 26, 167 -- 176, (2003).
[30] Tremolet, Y.: Diagnostics of linear and incremental approximations in 4D-var. Q. J. R. meteorol. Soc. 130, No. 601, 2233-2251 (2004)
[31] Restrepo, J.; Leaf, G.; Griewank, A.: Circumventing storage limitations in variational data assimilation studies. SIAM J. Sci. comput. 19, 1586-1605 (1998) · Zbl 0956.76078
[32] Y. Cao, J. Zhu, I.M. Navon and Z. Luo, A reduced order approach to four dimensional variational data assimilation using proper orthogonal decomposition, Journal for Numerical Methods in Fluids (to appear); Published online doi:10.1002/fid.1365. · Zbl 05152296