zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A combined forecasting approach based on fuzzy soft sets. (English) Zbl 1161.91472
Summary: Forecasting the export and import volume in international trade is the prerequisite of a government’s policy-making and guidance for a healthier international trade development. However, an individual forecast may not always perform satisfactorily, while combination of forecasts may result in a better forecast than component forecasts. We believe the component forecasts employed in combined forecasts are a description of the actual time series, which is fuzzy. This paper attempts to use forecasting accuracy as the criterion of fuzzy membership function, and proposes a combined forecasting approach based on fuzzy soft sets. This paper also examines the method with data of international trade from 1993 to 2006 in the Chongqing Municipality of China and compares it with a combined forecasting approach based on rough sets and each individual forecast. The experimental results show that the combined approach provided in this paper improves the forecasting performance of each individual forecast and is free from a rough sets approach’s restrictions as well. It is a promising forecasting approach and a new application of soft sets theory.

91B84Economic time series analysis
90C70Fuzzy programming
62M10Time series, auto-correlation, regression, etc. (statistics)
Full Text: DOI
[1] Bates, J. M.; Granger, C. W.: The combination of forecasts, Operational research quarterly 20, 451-468 (1969)
[2] Dickinson, J. P.: Some comments on the combination of forecasts, Operational research quarterly 26, 205-210 (1975) · Zbl 0312.62068 · doi:10.1057/jors.1975.43
[3] Makridakis, S.; Andersen, A.; Carbone, R.; Fildes, R.; Hibon, M.; Lewandowski, R.; Newton, J.; Parzen, E.; Winkler, R.: The accuracy of extrapolation (time series) methods: results of a forecasting competition, Journal of forecasting. 1, 111-153 (1982)
[4] Deutsch, M.; Granger, C. W.; Terasvirta, T.: The combination of forecasts using changing weights, International journal of forecasting 10, 47-57 (1994)
[5] Chan, C. K.; Kingsman, B. G.; Wong, H.: The value of combining forecasts in inventory management--a case study in banking, European journal of operational research 117, 199-210 (1999) · Zbl 0998.90504 · doi:10.1016/S0377-2217(98)00277-X
[6] Zhong, B.; Xiao, Z.: Determination to weighting coefficient of combination forecast based on rough set theory, Journal of Chongqing university (Natural science). 25, 127-130 (2002)
[7] Zhong, B.; Xiao, Z.: A compound projection method based on coarse aggregate theory, Statistical research 11, 37-39 (2002)
[8] R. Prudêncio, T. Ludermir, A Machine Learning Approach to Define Weights for Linear Combination of Forecasts, 2006, pp. 274--283
[9] Zhang, F.: An application of vector GARCH model in semiconductor demand planning, European journal of operational research 181, 288-297 (2007) · Zbl 1121.90382 · doi:10.1016/j.ejor.2006.06.014
[10] Molodtsov, D.: Soft set theory--first results, Computers & mathematics with applications 4/5, 19-31 (1999) · Zbl 0936.03049 · doi:10.1016/S0898-1221(99)00056-5
[11] Zadeh, L. A.: Fuzzy sets, Information and control 8, 338-353 (1965) · Zbl 0139.24606 · doi:10.1016/S0019-9958(65)90241-X
[12] Maji, P. K.; Biswas, R.; Roy, A. R.: Soft set theory, Computers & mathematics with applications., 555-562 (2003) · Zbl 1032.03525
[13] Aktaş, Hacı; Çağman, Naim: Soft sets soft groups, Information sciences 177, 2726-2735 (2007) · Zbl 1119.03050
[14] Jun, Y. B.; Park, C. H.: Applications of soft sets in ideal theory of BCK/BCI-algebras, Information sciences 178, 2466-2475 (2008) · Zbl 1184.06014 · doi:10.1016/j.ins.2008.01.017
[15] Maji, P. K.; Roy, A. R.: An application of soft sets in a decision making problem, Computers & mathematics with applications, 1077-1083 (2002) · Zbl 1044.90042 · doi:10.1016/S0898-1221(02)00216-X
[16] Xiao, Z.; Li, Y.; Zhong, B.; Yang, X.: Research on synthetically evaluating method for business competitive capacity based on soft set, Statistical research, 52-54 (2003)
[17] Mushrif, M. M.; Sengupta, S.; Ray, A. K.: Texture classification using a novel, soft-set theory based classification algorithm, Lecture notes in computer science 3851, 246-254 (2006)
[18] Chen, D.; Tsang, E. C. C.; Yeung, D. S.; Wang, X.: The parameterization reduction of soft sets and its applications, Computers & mathematics with applications 49, 757-763 (2005) · Zbl 1074.03510 · doi:10.1016/j.camwa.2004.10.036
[19] Roy, A. R.; Maji, P. K.: A fuzzy soft set theoretic approach to decision making problems, Journal of computational and applied mathematics 203, 412-418 (2007) · Zbl 1128.90536 · doi:10.1016/j.cam.2006.04.008
[20] Kong, Z.; Gao, L.; Wang, L.: Comment on ”A fuzzy soft set theoretic approach to decision making problems”, Journal of computational and applied mathematics (2008) · Zbl 1159.90421
[21] Zou, Y.; Xiao, Z.: Data analysis approaches of soft sets under incomplete information, Knowledge-based systems (2008)
[22] Maji, P. K.; Biswas, R.; Roy, A. R.: Fuzzy soft sets, Journal of fuzzy mathematics 9, 589-602 (2001) · Zbl 0995.03040
[23] Box, G. E. P.; Jenkins, G.: Time series analysis, forecasting and control, (1990) · Zbl 0249.62009
[24] Hyndman, R. J.; Koehler, A. B.: Another look at measures of forecast accuracy, International journal of forecasting 22, 679-688 (2006)
[25] Pawlak, Z.: Rough sets, International journal of computer and information sciences 11, 341-356 (1982) · Zbl 0501.68053
[26] Pawlak, Z.; Skowron, A.: Rudiments of rough sets, Information sciences 177, 3-27 (2007) · Zbl 1142.68549 · doi:10.1016/j.ins.2006.06.003
[27] Wang, G. Y.; Yu, H.; Yang, D. C.: Decision table reduction based on conditional information entropy, Chinese journal of computers 25, 759-766 (2002)