Dieulefait, Luis V. Explicit determination of the images of the Galois representations attached to abelian surfaces with \(\text{End}(A)= \mathbb Z\). (English) Zbl 1162.11347 Exp. Math. 11, No. 4, 503-512 (2002). Summary: We give an effective version of a result reported by Serre asserting that the images of the Galois representations attached to an abelian surface with \(\text{End}(A)= \mathbb Z\) are as large as possible for almost every prime. Our algorithm depends on the truth of Serre’s conjecture for two-dimensional odd irreducible Galois representations. Assuming this conjecture, we determine the finite set of primes with exceptional image. We also give infinite sets of primes for which we can prove (unconditionally) that the images of the corresponding Galois representations are large. We apply the results to a few examples of abelian surfaces. Cited in 23 Documents MathOverflow Questions: What are the maximal subgroups of GSp(2g,l)? MSC: 11F80 Galois representations 11G10 Abelian varieties of dimension \(> 1\) × Cite Format Result Cite Review PDF Full Text: DOI arXiv EuDML References: [1] Blasius D., Galois Groups over pp 33– (1989) [2] Brumer A., Compositio Math. 92 pp 227– (1994) [3] Brumer A., ”Non-Existence of Certain Semistable Abelian Varieties.” (2001) · Zbl 1073.14544 [4] Blichfeldt H., Finite Collineation Groups. (1917) [5] Deligne, P. 1971.Formes modulaires et représentations l-adiques139–172. Berlin-Heidelberg: Springer-Verlag. [Deligne 71], Lect. Notes in Mathematics 179 [6] Dickson L., Trans. Amer. Math. Soc. pp 103– (1901) · doi:10.1090/S0002-9947-1901-1500559-9 [7] Hirschfeld J., Finite Projective Spaces of Three Dimensions. (1985) · Zbl 0574.51001 [8] Leprévost F., C. R. Acad. Sci. Paris 313 pp 451– (1991) [9] Le Duff P., Bull. Soc. Math. France 126 pp 507– (1998) [10] Liu Q., Compositio Math. 94 pp 51– (1994) [11] Mitchell H., Trans. Amer. Math. Soc. 15 pp 379– (1914) · doi:10.1090/S0002-9947-1914-1500986-9 [12] Ostrom T., Math. Z. 156 pp 59– (1977) · Zbl 0349.50004 · doi:10.1007/BF01215128 [13] Raynaud M., Bull. Soc. Math. France 102 pp 241– (1974) [14] Ribet K. A., Invent. Math. 28 pp 245– (1975) · Zbl 0302.10027 · doi:10.1007/BF01425561 [15] Ribet K. A., Glasgow Math. J. 27 pp 185– (1985) · Zbl 0596.10027 · doi:10.1017/S0017089500006170 [16] Ribet K. A., Pacific J. of Math. 181 pp 277– (1997) · doi:10.2140/pjm.1997.181.277 [17] J-Serre P., A belian l-adic Representations and Elliptic Curves (1968) [18] J-Serre P., Invent. Math. 15 pp 259– (1972) [19] J-Serre P., Oeuvres 4 (2000) [20] J-Serre P., Duke Math. J. 54 pp 179– (1987) · Zbl 0641.10026 · doi:10.1215/S0012-7094-87-05413-5 [21] Smart N. P., Proc. Lond. Math. Soc. pp 271– (1997) · Zbl 0885.11031 · doi:10.1112/S002461159700035X [22] Stein W., ”Heeke: The Modular Forms Calculator.” (2000) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.