×

zbMATH — the first resource for mathematics

On geometrically equivalent \(S\)-acts. (English) Zbl 1162.20043
Let \(S\) be a monoid and \(F_X\) a finitely generated free left \(S\)-act. For any binary relation \(T\subseteq F_X\times F_X\) and any \(S\)-act \(G\), define \(T'_G=\{\mu\colon F_X\to G\mid T\subseteq\text{Ker\,}\mu\}\). Denote \(T''=(T'_G)'\). Two \(S\)-acts \(G_1,G_2\) are said to be ‘geometrically equivalent’ if \(T''_{G_1}=T''_{G_2}\) for any binary relation \(T\subseteq F_X\times F_X\) on any finitely generated free \(S\)-act \(F_X\).
The author describes all \(S\)-acts geometrically equivalent to a given \(S\)-act in the case when \(S\) is a group or an Abelian group.

MSC:
20M50 Connections of semigroups with homological algebra and category theory
20M30 Representation of semigroups; actions of semigroups on sets
08C05 Categories of algebras
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] DOI: 10.1006/jabr.1999.7881 · Zbl 0938.20020 · doi:10.1006/jabr.1999.7881
[2] DOI: 10.1007/BF02673880 · Zbl 0965.08010 · doi:10.1007/BF02673880
[3] DOI: 10.1142/S0218196701000668 · Zbl 1040.08005 · doi:10.1142/S0218196701000668
[4] DOI: 10.1090/S0002-9939-01-06108-1 · Zbl 0990.20018 · doi:10.1090/S0002-9939-01-06108-1
[5] Grätzer G., Universal Algebra (1979)
[6] DOI: 10.1080/00927870601115856 · Zbl 1121.16023 · doi:10.1080/00927870601115856
[7] DOI: 10.1080/00927870601169390 · Zbl 1122.20032 · doi:10.1080/00927870601169390
[8] DOI: 10.1515/9783110812909 · doi:10.1515/9783110812909
[9] DOI: 10.1007/978-1-4612-9839-7 · doi:10.1007/978-1-4612-9839-7
[10] Maltsev A. I., Algebraic Systems (1973)
[11] Plotkin B., Siberian Adv. Math. 7 pp 64–
[12] Plotkin B. I., Algebra i Analiz 9 pp 224–
[13] DOI: 10.1080/00927879908826679 · Zbl 1007.20023 · doi:10.1080/00927879908826679
[14] Plotkin B. I., Fundam. Prikl. Mat. 10 pp 181–
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.