×

Integral models of unitary representations of current groups with values in semidirect products. (English) Zbl 1162.22020

Funct. Anal. Appl. 42, No. 4, 279-289 (2008); translation from Funkts. Anal. Prilozh. 42, No. 4, 37-49 (2008).
Authors’ summary: We describe a general construction of irreducible unitary representations of the group of currents with values in the semidirect product of a locally compact subgroup \(P_{0}\) by a one-parameter group \(\mathbb R^*_{+} = \{r: r > 0\}\) of automorphisms of \(P_{0}\). This construction is determined by a faithful unitary representation of \(P_{0}\) (canonical representation) whose images under the action of the group of automorphisms tend to the identity representation as \(r \rightarrow 0\). We apply this construction to the current groups of maximal parabolic subgroups in the groups of motions of the \(n\)-dimensional real and complex Lobachevsky spaces. The obtained representations of the current groups of parabolic subgroups uniquely extend to the groups of currents with values in the groups \(O(n, 1)\) and \(U(n, 1)\). This gives a new description of the representations, constructed in the 1970s and realized in the Fock space, of the current groups of the latter groups. The key role in our construction is played by the so-called special representation of the parabolic subgroup \(P\) and a remarkable \(\sigma \)-finite measure (Lebesgue measure) \(\mathcal L\) on the space of distributions.

MSC:

22E65 Infinite-dimensional Lie groups and their Lie algebras: general properties
22E67 Loop groups and related constructions, group-theoretic treatment
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] H. Araki, ”Factorizable representations of the current algebra,” Publ. RIMS Kyoto Univ. Ser. A, 5:3 (1970), 361–422. · Zbl 0238.22014
[2] A. M. Vershik, I. M. Gelfand, and M. I. Graev, ”Representations of the group SL(2, R), where R is a ring of functions,” Uspekhi Mat. Nauk, 28:5 (1973), 83–128; English transl.: Russian Math. Surveys, 28:5 (1973), 87–132; also in: Representation Theory London Math. Soc. Lect. Note Ser., vol. 69, Cambridge Univ. Press, 1982, 15–60.
[3] A. M. Vershik, I. M. Gelfand, and M. I. Graev, ”Irreducible representations of the group G X and cohomology,” Funkts. Anal. Prilozhen., 8:2 (1974), 67–69; English transl.: Funct. Anal. Appl., 8 (1974), 151–153.
[4] F. A. Berezin, ”Representations of the continuous direct product of universal coverings of the group of motions of a complex ball,” Trudy Moskov. Mat. Obshch., 36 (1978), 275–293; English transl.: Trans. Mosc. Math. Soc., 36 (1979), 281–298. · Zbl 0434.22015
[5] I. M. Gelfand, M. I. Graev, and A. M. Vershik, ”Models of representations of current groups,” in: Representations of Lie Groups and Lie Algebras, Akad. Kiado, Budapest, 1985, 121–179.
[6] I. M. Gelfand and M. I. Graev, ”Special representations of the group SU(n, 1) and projective unitary representations of the current group SU(n, 1)X,” Dokl. Ross. Akad. Nauk, 332:3 (1993), 280–282; Englsih transl.: Russian Acad. Sci. Dokl. Math., 48: 2 (1994), 291–295. · Zbl 0829.22027
[7] A. M. Vershik and M. I. Graev, ”A commutative model of a representation of the group O(n, 1)X and a generalized Lebesgue measure in the space of distributions,” Funkts. Anal. Prilozhen., 39:2 (2005), 1–12; Englsih transl.: Funct. Anal. Appl., 39:2 (2005), 81–90. · Zbl 1087.41027
[8] A. M. Vershik and M. I. Graev, ”Structure of the complementary series and special representations of the groups O(n, 1) and U(n, 1),” Uspekhi Mat. Nauk, 61:5 (2006), 1–88; English transl.: Russian Math. Surveys, 61:5 (2006), 799–884. · Zbl 1148.22017
[9] M. I. Graev and A. M. Vershik, ”The basic representation of the current group O(n, 1)X in the L 2 space over the generalized Lebesgue measure,” Indag. Math., 16:3/4 (2005), 499–529. · Zbl 1147.22013
[10] A. M. Vershik and M. I. Graev, ”Integral models of representations of current groups,” Funkts. Anal. Prilozhen., 42:1 (2008), 22–32; Englsih transl.: Funct. Anal. Appl., 42:1 (2008), 20–28. · Zbl 1162.22019
[11] A. M. Vershik, ”Does there exist the Lebesgue measure in the infinite-dimensional space?” Trudy Mat. Inst. Steklov, 259 (2007), 256–281. · Zbl 1165.28003
[12] A. Vershik, ”Invariant measures for continual Cartan subgroup,” J. Funct. Anal., 2008 (to appear). · Zbl 1187.37007
[13] A. M. Vershik and S. I. Karpushev, ”Cohomology of groups in unitary representations, the neighborhood of the identity, and conditionally positive definite functions,” Mat. Sb., 119:4 (1982), 521–533; Englsih transl.: Math. USSR-Sb., 47 (1984), 513–526. · Zbl 0513.43009
[14] A. M. Vershik and N. V. Tsilevich, ”Fock factorizations and decompositions of the L 2 spaces over general Levy processes,” Uspekhi Mat. Nauk, 58:3 (2003), 3–50; Englsih transl.: Russian Math. Surveys, 58:3 (2003), 427–472. · Zbl 1060.46056
[15] N. Tsilevich, A. Vershik, and M. Yor, ”An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process,” J. Funct. Anal., 185:1 (2001), 274–296. · Zbl 0990.60053
[16] R. S. Ismagilov, Representations of infinite-dimensional groups, Transl. Math. Monograph., vol. 152, Amer. Math. Soc., Providence, RI, 1996. · Zbl 0856.22001
[17] B. Tsirelson and A. Vershik, ”Examples of nonlinear continuous tensor products of measure spaces and non-Fock factorizations,” Rev. Math. Phys., 10:1 (1998), 81–145. · Zbl 0912.46022
[18] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis, vol. II, Springer-Verlag, New York-Berlin, 1970. · Zbl 0213.40103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.