zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Partial survival and extinction in two competing species with impulses. (English) Zbl 1162.34308
Summary: We have considered a nonautonomous two dimensional Lotka-Volterra system with impulsive effect. We prove that one of components will be driven to extinction while the other will stabilize at a certain solution of a impulsive logistic equation under some conditions.

MSC:
34A34Nonlinear ODE and systems, general
WorldCat.org
Full Text: DOI
References:
[1] Ahmad, S.: On the nonautonomous Volterra--Lotka competition equations. Proc. amer. Math. soc. 117, 199-204 (1993) · Zbl 0848.34033
[2] Ahmad, S.: Extinction of species in nonautonomous Volterra--Lotka competition systems. Proc. amer. Math. soc. 127, 2905-2910 (1999) · Zbl 0924.34040
[3] Ahmad, S.; Lazer, A. C.: Average conditions for global asymptotic stabity in a nonautonomous Lotka--Volterra system. Nonlinear anal. 40, 37-49 (2000) · Zbl 0955.34041
[4] Ahmad, S.; De Oca, F. Montes: Extinction in nonautonomous T-periodic competitive Lotka--Volterra system. Appl. math. Comput. 90, 155-166 (1998) · Zbl 0906.92024
[5] Ahmad, S.; De Oca, F. Montes: Average growth and extinction in a two dimensional Lotka--Volterra system. Dyn. contin. Discrete impuls. Syst. 9, 177-186 (2002) · Zbl 1081.34513
[6] Bainov, D. D.; Simeonov, P. S.: Impulsive differential equations: periodic solutions and applications. (1993) · Zbl 0815.34001
[7] Eilbeck, J. C.; Lopez-Gomez, J.: On the periodic Lotka--Volterra competitive model. J. math. Anal. appl. 210, 58-87 (1997) · Zbl 0874.34039
[8] Lisena, B.: Competitive exclusion in a periodic Lotka--Volterra system. Appl. math. Comput. 177, 761-768 (2006) · Zbl 1100.92070
[9] Lisena, B.: Global stability in periodic competitive system. Nonlinear anal. RWA 5, 613-627 (2004) · Zbl 1089.34044
[10] Lopez-Gomez, J.; Ortega, R.; Tineo, A.: The periodic predator-prey Lotka--Volterra model. Adv. differential equations 1, 403-432 (1996) · Zbl 0849.34026
[11] De Oca, F. Montes; Vivas, M.: Extinction in a two dimensional Lotka--Volterra system with infinite delay. Nonlinear anal. RWA 7, 1042-1047 (2006) · Zbl 1122.34058
[12] De Oca, F. Montes; Zeeman, M. L.: Extinction in nonautonomous competitive Lotka--Volterra systems. Proc. amer. Math. soc. 124, 3677-3687 (1996) · Zbl 0866.34029
[13] Redheffer, R.: Nonautonomous Lotka--Volterra systems I. J. differential equations 127, 1-20 (1996) · Zbl 0864.34043
[14] Tineo, A.: Necessary and sufficient conditions for extinction of one species. Adv. nonlinear studies 5, No. 1, 57-71 (2005) · Zbl 1091.34028