Boundary blow-up solutions to elliptic systems of competitive type. (English) Zbl 1162.35359

The elliptic system \(\Delta u=u^pv^q\), \(\Delta v=u^rv^s\), where \(p,s>1\), \(q,r>0\) is studied on smooth bounded domain \(\Omega\subset \mathbb R^n\). Dirichlet type boundary conditions: \(u=\lambda, v=\mu\) or \(u=v=+\infty\) or \(u=+\infty, v=\mu\) are considered with \(\lambda,\mu>0\). Under certain hypotheses the existence and nonexistence of positive solutions is proved together with discussion of uniqueness and nonuniqueness. Moreover, the exact asymptotic behaviour of the solutions and their normal derivatives near \(\partial \Omega\) is provided.


35J55 Systems of elliptic equations, boundary value problems (MSC2000)
35B45 A priori estimates in context of PDEs
35J60 Nonlinear elliptic equations
Full Text: DOI


[1] Bandle, C.; Essèn, M., On the solutions of quasilinear elliptic problems with boundary blow-up, Sympos. Math., 35, 93-111 (1994) · Zbl 0806.35045
[2] Bandle, C.; Marcus, M., Sur les solutions maximales de problèmes elliptiques non linéairesbornes isopérimetriques et comportement asymptotique, C. R. Acad. Sci. Paris Sér. I Math., 311, 91-93 (1990) · Zbl 0726.35041
[3] Bandle, C.; Marcus, M., “Large” solutions of semilinear elliptic equationsexistence uniqueness, and asymptotic behaviour, J. Anal. Math., 58, 9-24 (1992) · Zbl 0802.35038
[4] Bandle, C.; Marcus, M., On second order effects in the boundary behaviour of large solutions of semilinear elliptic problems, Differential Integral Equations, 11, 1, 23-34 (1998) · Zbl 1042.35535
[5] Bieberbach, L., \( \Delta u = e^u\) und die automorphen Funktionen, Math. Ann., 77, 173-212 (1916)
[8] Dancer, N.; Du, Y., Effects of certain degeneracies in the predator-prey model, SIAM J. Math. Anal., 34, 2, 292-314 (2002) · Zbl 1055.35046
[9] Del Pino, M.; Letelier, R., The influence of domain geometry in boundary blow-up elliptic problems, Nonlinear Anal., 48, 6, 897-904 (2002) · Zbl 1142.35431
[10] Díaz, G.; Letelier, R., Explosive solutions of quasilinear elliptic equationsexistence and uniqueness, Nonlinear Anal., 20, 97-125 (1993) · Zbl 0793.35028
[11] Du, Y., Effects of a degeneracy in the competition model. Part Iclassical and generalized steady-state solutions, J. Differential Equations, 181, 92-132 (2002) · Zbl 1042.35016
[12] Du, Y., Effects of a degeneracy in the competition model. Part IIperturbation and dynamical behaviour, J. Differential Equations, 181, 133-164 (2002) · Zbl 1042.35017
[13] Du, Y.; Huang, Q., Blow-up solutions for a class of semilinear elliptic and parabolic equations, SIAM J. Math. Anal., 31, 1-18 (1999) · Zbl 0959.35065
[15] García-Melián, J.; Letelier-Albornoz, R.; Sabina de Lis, J., Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up, Proc. Amer. Math. Soc., 129, 12, 3593-3602 (2001) · Zbl 0989.35044
[17] García-Melián, J.; Suárez, A., Existence and uniqueness of positive large solutions to some cooperative elliptic systems, Adv. Nonlinear Studies, 3, 193-206 (2003) · Zbl 1045.35025
[18] Gilbarg, D.; Trudinger, N. S., Elliptic Partial Differential Equations of Second Order (1983), Springer: Springer Berlin · Zbl 0691.35001
[19] Keller, J. B., On solutions of \(\Delta u = f(u)\), Comm. Pure Appl. Math., 10, 503-510 (1957) · Zbl 0090.31801
[21] Kondrat’ev, V. A.; Nikishkin, V. A., Asymptotics, near the boundary, of a solution of a singular boundary value problem for a semilinear elliptic equation, Differential Equations, 26, 345-348 (1990) · Zbl 0706.35054
[22] Lazer, A. C.; Mckenna, P. J., On a problem of Bieberbach and Rademacher, Nonlinear Anal., 21, 327-335 (1993) · Zbl 0833.35052
[23] Lazer, A. C.; Mckenna, P. J., Asymptotic behaviour of solutions of boundary blow-up problems, Differential Integral Equations, 7, 1001-1019 (1994) · Zbl 0811.35010
[24] Loewner, C.; Nirenberg, L., Partial differential equations invariant under conformal of projective transformations, (Contributions to Analysis (1974), Academic Press: Academic Press New York), 245-272, (a collection of papers dedicated to Lipman Bers)
[25] López-Gómez, J., Coexistence and metacoexistence for competitive species, Houston J. Math., 29, 2, 483-536 (2003) · Zbl 1034.35062
[26] Marcus, M.; Véron, L., Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations, Ann. Inst. H. Poincaré Anal. Non Linéaire, 14, 2, 237-274 (1997) · Zbl 0877.35042
[27] Mohammed, M.; Porcu, G.; Porru, G., Large solutions to some non-linear O.D.E. with singular coefficients, Nonlinear Anal., 47, 513-524 (2001) · Zbl 1042.34534
[28] Osserman, R., On the inequality \(\Delta u \geqslant f(u)\), Pacific J. Math., 7, 1641-1647 (1957) · Zbl 0083.09402
[29] Pao, C. V., Nonlinear Parabolic and Elliptic Equations (1992), Plenum Press: Plenum Press New York · Zbl 0780.35044
[30] Véron, L., Semilinear elliptic equations with uniform blowup on the boundary, J. Anal. Math., 59, 231-250 (1992) · Zbl 0802.35042
[31] Zhang, Z., A remark on the existence of explosive solutions for a class of semilinear elliptic equations, Nonlinear Anal., 41, 143-148 (2000) · Zbl 0964.35053
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.