zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Boundary blow-up solutions to elliptic systems of competitive type. (English) Zbl 1162.35359
The elliptic system $\Delta u=u^pv^q$, $\Delta v=u^rv^s$, where $p,s>1$, $q,r>0$ is studied on smooth bounded domain $\Omega\subset \Bbb R^n$. Dirichlet type boundary conditions: $u=\lambda, v=\mu$ or $u=v=+\infty$ or $u=+\infty, v=\mu$ are considered with $\lambda,\mu>0$. Under certain hypotheses the existence and nonexistence of positive solutions is proved together with discussion of uniqueness and nonuniqueness. Moreover, the exact asymptotic behaviour of the solutions and their normal derivatives near $\partial \Omega$ is provided.

35J55Systems of elliptic equations, boundary value problems (MSC2000)
35B45A priori estimates for solutions of PDE
35J60Nonlinear elliptic equations
Full Text: DOI
[1] Bandle, C.; Essèn, M.: On the solutions of quasilinear elliptic problems with boundary blow-up. Sympos. math. 35, 93-111 (1994) · Zbl 0806.35045
[2] Bandle, C.; Marcus, M.: Sur LES solutions maximales de problèmes elliptiques non linéairesbornes isopérimetriques et comportement asymptotique. C. R. Acad. sci. Paris sér. I math. 311, 91-93 (1990)
[3] Bandle, C.; Marcus, M.: `Large’ solutions of semilinear elliptic equationsexistence uniqueness, and asymptotic behaviour. J. anal. Math. 58, 9-24 (1992) · Zbl 0802.35038
[4] Bandle, C.; Marcus, M.: On second order effects in the boundary behaviour of large solutions of semilinear elliptic problems. Differential integral equations 11, No. 1, 23-34 (1998) · Zbl 1042.35535
[5] Bieberbach, L.: $\Delta $u=eu und die automorphen funktionen. Math. ann. 77, 173-212 (1916)
[6] M. Chuaqui, C. Cortázar, M. Elgueta, C. Flores, J. García-Melián, R. Letelier, On an elliptic problem with boundary blow-up and a singular weight: the radial case, Proc. Roy. Soc. Edinburgh, to appear.
[7] M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián, Uniqueness and boundary behaviour of large solutions to elliptic problems with singular weights, submitted for publication.
[8] Dancer, N.; Du, Y.: Effects of certain degeneracies in the predator -- prey model. SIAM J. Math. anal. 34, No. 2, 292-314 (2002) · Zbl 1055.35046
[9] Del Pino, M.; Letelier, R.: The influence of domain geometry in boundary blow-up elliptic problems. Nonlinear anal. 48, No. 6, 897-904 (2002) · Zbl 1142.35431
[10] Díaz, G.; Letelier, R.: Explosive solutions of quasilinear elliptic equationsexistence and uniqueness. Nonlinear anal. 20, 97-125 (1993) · Zbl 0793.35028
[11] Du, Y.: Effects of a degeneracy in the competition model. Part iclassical and generalized steady-state solutions. J. differential equations 181, 92-132 (2002) · Zbl 1042.35016
[12] Du, Y.: Effects of a degeneracy in the competition model. Part iiperturbation and dynamical behaviour. J. differential equations 181, 133-164 (2002) · Zbl 1042.35017
[13] Du, Y.; Huang, Q.: Blow-up solutions for a class of semilinear elliptic and parabolic equations. SIAM J. Math. anal. 31, 1-18 (1999) · Zbl 0959.35065
[14] J. García-Melián, A remark on the existence of positive large solutions via sub and supersolutions, submitted for publication.
[15] García-Melián, J.; Letelier-Albornoz, R.; De Lis, J. Sabina: Uniqueness and asymptotic behaviour for solutions of semilinear problems with boundary blow-up. Proc. amer. Math. soc. 129, No. 12, 3593-3602 (2001) · Zbl 0989.35044
[16] J. García-Melián, R. Letelier-Albornoz, J. Sabina de Lis, The solvability of an elliptic system under a singular boundary condition, submitted for publication. · Zbl 1237.35048
[17] García-Melián, J.; Suárez, A.: Existence and uniqueness of positive large solutions to some cooperative elliptic systems. Adv. nonlinear studies 3, 193-206 (2003) · Zbl 1045.35025
[18] Gilbarg, D.; Trudinger, N. S.: Elliptic partial differential equations of second order. (1983) · Zbl 0562.35001
[19] Keller, J. B.: On solutions of $\Delta u=f(u)$. Comm. pure appl. Math. 10, 503-510 (1957) · Zbl 0090.31801
[20] S. Kim, A note on boundary blow-up problem of \Delta u=up, IMA preprint No. 1820, 2002.
[21] Kondrat’ev, V. A.; Nikishkin, V. A.: Asymptotics, near the boundary, of a solution of a singular boundary value problem for a semilinear elliptic equation. Differential equations 26, 345-348 (1990) · Zbl 0706.35054
[22] Lazer, A. C.; Mckenna, P. J.: On a problem of Bieberbach and Rademacher. Nonlinear anal. 21, 327-335 (1993) · Zbl 0833.35052
[23] Lazer, A. C.; Mckenna, P. J.: Asymptotic behaviour of solutions of boundary blow-up problems. Differential integral equations 7, 1001-1019 (1994) · Zbl 0811.35010
[24] Loewner, C.; Nirenberg, L.: Partial differential equations invariant under conformal of projective transformations. Contributions to analysis, 245-272 (1974) · Zbl 0298.35018
[25] López-Gómez, J.: Coexistence and metacoexistence for competitive species. Houston J. Math. 29, No. 2, 483-536 (2003) · Zbl 1034.35062
[26] Marcus, M.; Véron, L.: Uniqueness and asymptotic behaviour of solutions with boundary blow-up for a class of nonlinear elliptic equations. Ann. inst. H. Poincaré anal. Non linéaire 14, No. 2, 237-274 (1997) · Zbl 0877.35042
[27] Mohammed, M.; Porcu, G.; Porru, G.: Large solutions to some non-linear ODE with singular coefficients. Nonlinear anal. 47, 513-524 (2001) · Zbl 1042.34534
[28] Osserman, R.: On the inequality $\Delta u\geqslant f(u)$. Pacific J. Math. 7, 1641-1647 (1957) · Zbl 0083.09402
[29] Pao, C. V.: Nonlinear parabolic and elliptic equations. (1992) · Zbl 0777.35001
[30] Véron, L.: Semilinear elliptic equations with uniform blowup on the boundary. J. anal. Math. 59, 231-250 (1992) · Zbl 0802.35042
[31] Zhang, Z.: A remark on the existence of explosive solutions for a class of semilinear elliptic equations. Nonlinear anal. 41, 143-148 (2000) · Zbl 0964.35053