zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Travelling wave solutions for the KdV-Burgers-Kuramoto and nonlinear Schrödinger equations which describe pseudospherical surfaces. (English) Zbl 1162.35449
Summary: We use the geometric notion of a differential system describing surfaces of a constant negative curvature and describe a family of pseudospherical surfaces for the KdV-Burgers-Kuramoto and nonlinear Schrödinger equations with constant Gaussian curvature $ - 1$. Travelling wave solutions for the above equations are obtained by using a sech-tanh method and Wu’s elimination method.

35Q53KdV-like (Korteweg-de Vries) equations
35Q55NLS-like (nonlinear Schrödinger) equations
35A30Geometric theory for PDE, characteristics, transformations
53C44Geometric evolution equations (mean curvature flow, Ricci flow, etc.)
Full Text: DOI EuDML
[1] M. J. Ablowitz and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scattering, vol. 149 of London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, UK, 1991. · Zbl 0762.35001
[2] J. Moser, “Various aspects of integrable Hamiltonian systems,” in Dynamical Systems (C.I.M.E. Summer School, Bressanone, 1978), vol. 8 of Progress in Mathematics, pp. 233-289, Birkhäuser, Boston, Mass, USA, 1980. · Zbl 0468.58011
[3] R. S. Palais, “The symmetries of solitons,” Bulletin of the American Mathematical Society, vol. 34, no. 4, pp. 339-403, 1997. · Zbl 0886.58040 · doi:10.1090/S0273-0979-97-00732-5
[4] T. Chuu-Lian and K. Uhlenbeck, Eds., Introduction to Surveys in Differential Geometry: Integrable Systems, Surveys in Differential Geometry, IV, International Press, Boston, Mass, USA, 1998. · Zbl 0938.35182
[5] I. V. Cherednik, “Jacobians in classical field theory,” Physica D, vol. 3, no. 1-2, pp. 306-310, 1981. · Zbl 1194.81157 · doi:10.1016/0167-2789(81)90134-2
[6] K. Uhlenbeck, “Harmonic maps into Lie groups: classical solutions of the chiral model,” Journal of Differential Geometry, vol. 30, no. 1, pp. 1-50, 1989. · Zbl 0677.58020
[7] V. E. Zakharov and A. V. Mikhailov, “Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method,” Soviet Physics. JETP, vol. 74, no. 6, pp. 1953-1973, 1978.
[8] F. E. Burstall, D. Ferus, F. Pedit, and U. Pinkall, “Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras,” Annals of Mathematics, vol. 138, no. 1, pp. 173-212, 1993. · Zbl 0796.53063 · doi:10.2307/2946637
[9] A. I. Bobenko, “All constant mean curvature tori in R3, S3, H3 in terms of theta-functions,” Mathematische Annalen, vol. 290, no. 2, pp. 209-245, 1991. · Zbl 0711.53007 · doi:10.1007/BF01459243 · eudml:164816
[10] E. Cartan, “Sur les variétés de courbure constante d’un espace euclidien ou non-euclidien,” Bulletin de la Société Mathématique de France, vol. 47, pp. 125-160, 1919. · Zbl 47.0692.03
[11] K. Tenenblat and C. L. Terng, “Bäcklund’s theorem for n-dimensional submanifolds of R2n-1,” Annals of Mathematics, vol. 111, no. 3, pp. 477-490, 1980. · Zbl 0462.35079
[12] A. I. Bobenko and W. K. Schief, “Affine spheres: discretization via duality relations,” Experimental Mathematics, vol. 8, no. 3, pp. 261-280, 1999. · Zbl 0972.53012 · doi:10.1080/10586458.1999.10504404 · eudml:225790
[13] S. S. Chern and C. L. Terng, “An analogue of Bäcklund’s theorem in affine geometry,” The Rocky Mountain Journal of Mathematics, vol. 10, no. 1, pp. 105-124, 1980. · Zbl 0407.53002 · doi:10.1216/RMJ-1980-10-1-105
[14] M. J. Boussinesq, “Théorie de l’intumescence appelée onde solitaire ou de translation se propageant dans un canal rectangulaire,” Comptes Rendus de l’Académie des Sciences, vol. 72, pp. 755-759, 1871. · Zbl 03.0486.01
[15] D. J. Korteweg and G. de Vries, “On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,” Philosophical Magazine, vol. 36, pp. 422-443, 1895. · Zbl 26.0881.02
[16] J. S. Russell, “Report on waves,” in Proceedings of the 14th Meeting of the British Association for the Advancement of Science Reports, pp. 311-392, John Murray, London, UK, September 19844.
[17] E. Fermi, J. Pasta, and S. Ulam, “Studies of nonlinear problems,” Los Alamos Report No. LA1940, 1955. · Zbl 0353.70028
[18] C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteweg-de Vries equation,” Physical Review Letters, vol. 19, no. 19, pp. 1095-1097, 1967. · Zbl 1103.35360 · doi:10.1103/PhysRevLett.19.1095
[19] N. J. Zabusky and M. D. Kruskal, “Interaction of “solitons” in a collisionless plasma and the recurrence of initial states,” Physical Review Letters, vol. 15, no. 6, pp. 240-243, 1965. · Zbl 1201.35174 · doi:10.1103/PhysRevLett.15.240 · http://staff.ustc.edu.cn/~jzheng/PhysRevLett_15_0240.pdf
[20] N. Hitchin, “Stable bundles and integrable systems,” Duke Mathematical Journal, vol. 54, no. 1, pp. 91-114, 1987. · Zbl 0627.14024 · doi:10.1215/S0012-7094-87-05408-1
[21] R. Donagi and E. Witten, “Supersymmetric Yang-Mills theory and integrable systems,” Nuclear Physics B, vol. 460, no. 2, pp. 299-334, 1996. · Zbl 0996.37507 · doi:10.1016/0550-3213(95)00609-5
[22] E. Witten, “Two-dimensional gravity and intersection theory on moduli space,” in Surveys in Differential Geometry (Cambridge, MA, 1990), pp. 243-310, Lehigh University, Bethlehem, Pa, USA, 1991. · Zbl 0757.53049
[23] G. Darboux, “Sur les surfaces orthogonales,” Bulletin de la Société Philomathique, p. 16, 1866.
[24] R. Beals, M. Rabelo, and K. Tenenblat, “Bäcklund transformations and inverse scattering solutions for some pseudospherical surface equations,” Studies in Applied Mathematics, vol. 81, no. 2, pp. 125-151, 1989. · Zbl 0697.58059
[25] J. A. Cavalcante and K. Tenenblat, “Conservation laws for nonlinear evolution equations,” Journal of Mathematical Physics, vol. 29, no. 4, pp. 1044-1049, 1988. · Zbl 0695.35038 · doi:10.1063/1.528020
[26] K. Chadan and P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, Texts and Monographs in Physic, Springer, New York, NY, USA, 1977. · Zbl 0363.47006
[27] S. S. Chern and K. Tenenblat, “Pseudospherical surfaces and evolution equations,” Studies in Applied Mathematics, vol. 74, no. 1, pp. 55-83, 1986. · Zbl 0605.35080
[28] A. H. Khater, D. K. Callebaut, and S. M. Sayed, “Conservation laws for some nonlinear evolution equations which describe pseudo-spherical surfaces,” Journal of Geometry and Physics, vol. 51, no. 3, pp. 332-352, 2004. · Zbl 1069.37058 · doi:10.1016/j.geomphys.2003.11.009
[29] E. G. Reyes, “Conservation laws and Calapso-Guichard deformations of equations describing pseudo-spherical surfaces,” Journal of Mathematical Physics, vol. 41, no. 5, pp. 2968-2989, 2000. · Zbl 0992.53005 · doi:10.1063/1.533284
[30] E. G. Reyes, “On geometrically integrable equations and hierarchies of pseudo-spherical type,” in The Geometrical Study of Differential Equations (Washington, DC, 2000), vol. 285 of Contemporary Mathematics, pp. 145-155, American Mathematical Society, Providence, RI, USA, 2001. · Zbl 1198.37099
[31] V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet Physics. JETP, vol. 34, no. 1, pp. 62-69, 1972.
[32] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “The inverse scattering transform-Fourier analysis for nonlinear problems,” Studies in Applied Mathematics, vol. 53, no. 4, pp. 249-315, 1974. · Zbl 0408.35068
[33] K. Konno and M. Wadati, “Simple derivation of Bäcklund transformation from Riccati form of inverse method,” Progress of Theoretical Physics, vol. 53, no. 6, pp. 1652-1656, 1975. · Zbl 1079.35505 · doi:10.1143/PTP.53.1652
[34] N. A. Kudryashov, “Exact solutions of the generalized Kuramoto-Sivashinsky equation,” Physics Letters A, vol. 147, no. 5-6, pp. 287-291, 1990. · doi:10.1016/0375-9601(90)90449-X
[35] W. Malfliet and W. Hereman, “The tanh method-I: exact solutions of nonlinear evolution and wave equations,” Physica Scripta, vol. 54, no. 6, pp. 563-568, 1996. · Zbl 0942.35034 · doi:10.1088/0031-8949/54/6/003
[36] H. B. Lan and K. L. Wang, “Exact solutions for two nonlinear equations-I,” Journal of Physics A, vol. 23, no. 17, pp. 3923-3928, 1990. · Zbl 0718.35020 · doi:10.1088/0305-4470/23/17/021
[37] S. A. Khuri, “A complex tanh-function method applied to nonlinear equations of Schrödinger type,” Chaos, Solitons & Fractals, vol. 20, no. 5, pp. 1037-1040, 2004. · Zbl 1049.35156 · doi:10.1016/j.chaos.2003.09.042
[38] S. A. Khuri, “Traveling wave solutions for nonlinear differential equations: a unified ansätze approach,” Chaos, Solitons & Fractals, vol. 32, no. 1, pp. 252-258, 2007. · Zbl 1137.35422 · doi:10.1016/j.chaos.2005.10.106
[39] W. T. Wu, “Polynomial equations-solving and its applications,” in Algorithms and Computation (Beijing, 1994), vol. 834 of Lecture Notes in Computer Science, pp. 1-9, Springer, Berlin, Germany, 1994. · Zbl 0953.01500
[40] A. H. Khater, D. K. Callebaut, and S. M. Sayed, “Exact solutions for some nonlinear evolution equations which describe pseudo-spherical surfaces,” Journal of Computational and Applied Mathematics, vol. 189, no. 1-2, pp. 387-411, 2006. · Zbl 1093.35005 · doi:10.1016/j.cam.2005.10.007
[41] S. M. Sayed and G. M. Gharib, “Canonical reduction of self-dual Yang-Mills equations to Fitzhugh-Nagumo equation and exact solutions,” Chaos, Solitons & Fractals. In press. · Zbl 1197.35139 · doi:10.1016/j.chaos.2007.01.076
[42] C. Yan, “A simple transformation for nonlinear waves,” Physics Letters A, vol. 224, no. 1-2, pp. 77-84, 1996. · Zbl 1037.35504 · doi:10.1016/S0375-9601(96)00770-0
[43] T. Z. Yan and H. Q. Zhang, “New explicit and exact travelling wave solutions for a system of variant Boussinesq equations in mathematical physics,” Physics Letters A, vol. 252, no. 6, pp. 291-296, 1999. · Zbl 0938.35130 · doi:10.1016/S0375-9601(98)00956-6