zbMATH — the first resource for mathematics

Periods, Lefschetz numbers and entropy for a class of maps on a bouquet of circles. (English) Zbl 1162.37303
Summary: We consider some smooth maps on a bouquet of circles. For these maps we can compute the number of fixed points, the existence of periodic points and an exact formula for topological entropy. We use Lefschetz fixed point theory and actions of our maps on both the fundamental group and the first homology group.

37B40 Topological entropy
37C25 Fixed points and periodic points of dynamical systems; fixed-point index theory; local dynamics
37C35 Orbit growth in dynamical systems
37E25 Dynamical systems involving maps of trees and graphs
Full Text: DOI arXiv
[1] Alsedà L., Advanced Series in Non Linear Dynamics 5, in: Combinatorial Dynamics and Entropy in Dimension One, 2. ed. (2000)
[2] Alves, J.F., Hric, R. and Ramos, J.S., 2005, Topological Entropy, Homological Growth and Zeta Functions on Graphs. Nonlinearity, 591–607. · Zbl 1067.37015
[3] Brown R.F., The Lefschetz Fixed Point Theorem (1971) · Zbl 0216.19601
[4] Dold A., Lectures on Algebraic Topology (1972) · Zbl 0234.55001
[5] Franks J., CBMS Regional Conference Series 49, in: Homology and Dynamical Systems (1982)
[6] DOI: 10.1142/S0218127495001046 · Zbl 0886.58094
[7] DOI: 10.2307/2155063 · Zbl 0846.58045
[8] Kelly M., Pacific Journal of Mathematics 126 pp 81– (1987) · Zbl 0571.55003
[9] Llibre J., Contemporary Mathematics 152 pp 215– (1993)
[10] DOI: 10.1080/1023619021000047833 · Zbl 1025.55001
[11] DOI: 10.1142/S0218127499001280 · Zbl 1089.55500
[12] Llibre J., Comptes Rendus des Séances de l’Academie des Sciences 318 pp 1035– (1994)
[13] Llibre J., International Journal of Bifurcation and Chaos
[14] Manning A., LNM Springer 468 pp 185– (1975)
[15] Misiurewicz M., Asterisk 50 pp 299– (1977)
[16] Niven I., An Introduction to the Theory of Numbers, 4. ed. (1980) · Zbl 0431.10001
[17] Shub M., Bulletin American Mathematical Society 80 pp 21– (1974)
[18] DOI: 10.1007/978-1-4612-0881-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.