zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Boundedness character of a class of difference equations. (English) Zbl 1162.39011
A class of nonlinear difference equations with positive coefficients is considered. Sufficient conditions are given for the boundedness and unboundedness of positive solutions.

MSC:
39A22Growth, boundedness, comparison of solutions (difference equations)
39A20Generalized difference equations
39A12Discrete version of topics in analysis
WorldCat.org
Full Text: DOI
References:
[1] Berenhaut, K.; Foley, J.; Stević, S.: Boundedness character of positive solutions of a MAX difference equation. J. difference equ. Appl. 12, No. 12, 1193-1199 (2006) · Zbl 1116.39001
[2] Berenhaut, K.; Foley, J.; Stević, S.: Quantitative bound for the recursive sequence yn+1=A+ynyn-k. Appl. math. Lett. 19, No. 9, 983-989 (2006) · Zbl 1119.39004
[3] Berenhaut, K.; Foley, J.; Stević, S.: The global attractivity of the rational difference equation yn=1+yn-kyn-m. Proc. amer. Math. soc. 135, 1133-1140 (2007) · Zbl 1109.39004
[4] Berenhaut, K.; Stević, S.: The behaviour of the positive solutions of the difference equation xn=A+(xn-2xn-1)p. J. difference equ. Appl. 12, No. 9, 909-918 (2006) · Zbl 1111.39003
[5] Berg, L.: On the asymptotics of nonlinear difference equations. Z. anal. Anwendungen 21, No. 4, 1061-1074 (2002) · Zbl 1030.39006
[6] Çinar, C.; Stević, S.; Yalçinkaya, I.: On positive solutions of a reciprocal difference equation with minimum. J. appl. Math. comput. 17, No. 1--2, 307-314 (2005) · Zbl 1074.39002
[7] Cunningham, K. A.; Ladas, G.; Valicenti, S.; Feuer, J.: On the difference equation xn+1=max${xn,An}$xn2xn-1. New trends in difference equations (Temuco, 2000), 79-98 (2002)$ · Zbl 1062.39006
[8] Devault, R.; Kent, C.; Kosmala, W.: On the recursive sequence xn+1=p+xn-kxn. J. difference equ. Appl. 9, No. 8, 721-730 (2003) · Zbl 1049.39026
[9] Devault, R.; Ladas, G.; Shultz, S. W.: On the recursive sequence xn+1=Axn+1xn-1. Proc. amer. Math. soc. 126, No. 11, 3257-3261 (1998) · Zbl 0904.39012
[10] El-Owaidy, H. M.; Ahmed, A. M.; Mousa, M. S.: On asymptotic behaviour of the difference equation $xn+1={\alpha}+xn-1pxnp$. J. appl. Math. comput. 12, No. 1--2, 31-37 (2003) · Zbl 1052.39005
[11] Feuer, J.: On the eventual periodicity of xn+1=max${1xn,Anxn-1}$ with a period-four parameter. J. difference equ. Appl. 12, No. 5, 467-486 (2006)$ · Zbl 1095.39016
[12] Gutnik, L.; Stević, S.: On the behaviour of the solutions of a second order difference equation. Discrete dyn. Nat. soc. 2007, 14 pages (2007) · Zbl 1180.39002
[13] Iričanin, B.: A global convergence result for a higher-order difference equation. Discrete dyn. Nat. soc., 7 pages (2007)
[14] Kent, C. M.; Radin, M. A.: On the boundedness nature of positive solutions of the difference equation xn+1=max${Anxn,Bnxn-1}$, with periodic parameters. Dyn. contin. Discrete impuls. Syst. ser. B appl. Algorithms, No. Suppl., 11-15 (2003)$
[15] Mishev, D.; Patula, W. T.; Voulov, H. D.: A reciprocal difference equation with maximum. Comput. math. Appl. 43, 1021-1026 (2002) · Zbl 1050.39015
[16] Mishev, D.; Patula, W. T.; Voulov, H. D.: Periodic coefficients in a reciprocal difference equation with maximum. Panamer. math. J. 13, No. 3, 43-57 (2003) · Zbl 1050.39016
[17] Mishkis, A. D.: On some problems of the theory of differential equations with deviating argument. Uspehi mat. Nauk 32:2, No. 194, 173-202 (1977)
[18] Patula, W. T.; Voulov, H. D.: On a MAX type recurrence relation with periodic coefficients. J. difference equ. Appl. 10, No. 3, 329-338 (2004) · Zbl 1050.39017
[19] Popov, E. P.: Automatic regulation and control. (1966)
[20] Stević, S.: A note on the difference equation xn+1=\sumi=$0k{\alpha}$ixn-ipi. J. difference equ. Appl. 8, No. 7, 641-647 (2002)
[21] Stević, S.: A global convergence results with applications to periodic solutions. Indian J. Pure appl. Math. 33, No. 1, 45-53 (2002) · Zbl 1002.39004
[22] Stević, S.: On the recursive sequence xn+1=A\prodi=0kxn-i+1\prodj=k+22(k+1)xn-j. Taiwanese J. Math. 7, No. 2, 249-259 (2003)
[23] Stević, S.: On the recursive sequence $xn+1={\alpha}$n+xn-1xn II. Dynam. contin. Discrete impuls. Systems 10a, No. 6, 911-917 (2003)
[24] S. Stević, Some open problems and conjectures on difference equations. http://www.mi.sanu.ac.yu/colloquiums/mathcoll_programs/mathcoll.apr2004.htm
[25] Stević, S.: On the recursive sequence $xn+1={\alpha}+xn-1pxnp$. J. appl. Math. comput. 18, No. 1--2, 229-234 (2005) · Zbl 1078.39013
[26] Stević, S.: Asymptotic behavior of a class of nonlinear difference equations. Discrete dyn. Nat. soc., 10 (2006) · Zbl 1121.39006
[27] Stević, S.: On the recursive sequence xn=1+\sumi=$1k{\alpha}$ixn-pi\sumj=$1m{\beta}$jxn-qj. Discrete dyn. Nat. soc. 2007, 7 pages (2007)
[28] Stević, S.: On the recursive sequence $xn+1={\alpha}+xnp/xn-1p$. Discrete dyn. Nat. soc. 2007, 9 pages (2007)
[29] Sun, T.; Xi, H.; Wu, H.: On boundedness of the solutions of the difference equation xn+1=xn-1/(p+xn). Discrete dyn. Nat. soc., 7 pages (2006)
[30] Voulov, H. D.: On a difference equation with periodic coefficients. J. difference equ. Appl. 13, No. 5, 443-452 (2007) · Zbl 1121.39011
[31] Yan, X. X.; Li, W. T.; Zhao, Z.: On the recursive sequence $xn+1={\alpha}$-(xn/xn-1). J. appl. Math. computing 17, No. 1, 269-282 (2005) · Zbl 1068.39030
[32] Yalçinkaya, I.; Iričanin, B. D.; Çinar, C.: On a MAX-type difference equation. Discrete dyn. Nat. soc. 2007, 11 pages (2007)