zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Gabor analysis over finite Abelian groups. (English) Zbl 1162.43002
Summary: Gabor frames for signals over finite Abelian groups, generated by an arbitrary lattice within the finite time-frequency plane, are the central topic of this paper. Our generic approach covers both multi-dimensional signals as well as non-separable lattices, and in fact the multi-window case as well. Our generic approach includes most of the fundamental facts about Gabor expansions of finite signals for the case of product lattices, as they have been given by Qiu, Wexler-Raz or Tolimieri-Orr, Bastiaans and Van-Leest and others. In our presentation the spreading representation of linear operators between finite-dimensional Hilbert space as well as a symplectic version of Poisson’s summation formula over the finite time-frequency plane are essential ingredients. They bring us to the so-called Fundamental Identity of Gabor analysis. In addition, we highlight projective representations of the time-frequency plane and its subgroups and explain the natural connection to twisted group algebras. In the finite-dimensional setting discussed in this paper these twisted group algebras are just matrix algebras and their structure provides the algebraic framework for the study of the deeper properties of finite-dimensional Gabor frames, independent of the structure theory theorem for finite Abelian groups.

MSC:
43A25Fourier and Fourier-Stieltjes transforms on locally compact and other abelian groups
22D10Unitary representations of locally compact groups
42C15General harmonic expansions, frames
WorldCat.org
Full Text: DOI
References:
[1] Bastiaans, M. J.; Leest, A. J.: From the rectangular to the quincunx Gabor lattice via fractional Fourier transformation, IEEE signal process. Lett. 5, No. 8, 203-205 (1998)
[2] Bastiaans, M. J.; Leest, A. J.: Gabor’s signal expansion and the Gabor transform on a non-separable lattice, J. franklin inst. 337, No. 4, 291-301 (2000) · Zbl 0981.65158
[3] Benedetto, J. J.; Fickus, M.: Finite normalized tight frames, Adv. comput. Math. 18, No. 2 -- 4, 357-385 (2003) · Zbl 1028.42022 · doi:10.1023/A:1021323312367
[4] Bölcskei, H.; Eldar, Y.: Geometrically uniform frames, IEEE trans. Inform. theory 49, No. 4, 993-1006 (2003) · Zbl 1063.94509
[5] Cordero, E.; Gröchenig, K.: Time -- frequency analysis of localization operators, J. funct. Anal. 205, No. 1, 107-131 (2003) · Zbl 1047.47038 · doi:10.1016/S0022-1236(03)00166-6
[6] Daubechies, I.; Landau, H. J.; Landau, Z.: Gabor time -- frequency lattices and the wexler -- raz identity, J. Fourier anal. Appl. 1, No. 4, 437-478 (1995) · Zbl 0888.47018 · doi:10.1007/s00041-001-4018-3
[7] Demmel, J. W.: Applied numerical linear algebra, (1997) · Zbl 0879.65017
[8] Digernes, T.; Varadarajan, V. S.: Models for the irreducible representation of a Heisenberg group, Infin. dimens. Anal. quantum probab. Relat. top. 7, No. 4, 527-546 (2004) · Zbl 1077.81054 · doi:10.1142/S021902570400175X
[9] Dörfler, M.; Feichtinger, H.; Gröchenig, K.: Time -- frequency partitions for the Gelfand triple (S0,L2,$S0^{\prime}$), Math. scand. 98, No. 1, 81-96 (2006) · Zbl 1215.42013
[10] Eldar, Y. C.; Matusiak, E.; Werther, T.: A constructive inversion framework for twisted convolution, Monatsh. math. 150, No. 4, 297-308 (2007) · Zbl 1131.44005 · doi:10.1007/s00605-006-0438-0
[11] D. Farden, L. Scharf, Estimating time -- frequency distributions and scattering functions using the Rihaczek distribution, in: Proc. Sensor Array and Multichannel Signal Processing Workshop, Sitges, Spain, July 18 -- 21, 2004, pp. 470 -- 474
[12] Farenick, D.: Algebras of linear transformations, (2001) · Zbl 0959.15001
[13] Feichtinger, H.; Hazewinkel, M.; Kaiblinger, N.; Matusiak, E.; Neuhauser, M.: Metaplectic operators on cn, Quart. J. Math. 58, No. 1, 15-28 (2008) · Zbl 1142.22007 · doi:10.1093/qmath/ham023
[14] Feichtinger, H.; Kozek, W.: Quantization of TF lattice-invariant operators on elementary LCA groups, Gabor analysis and algorithms. Theory and applications, 452-488 (1998) · Zbl 0890.42012
[15] Feichtinger, H.; Qiu, S.: Gabor-type matrices and discrete huge Gabor transforms, Proc. ICASSP’95 2, 1089-1092 (1995)
[16] Goldstein, J. A.; Levy, M.: Linear algebra and quantum chemistry, Amer. math. Monthly 98, No. 8, 710-718 (1991) · Zbl 0755.46041 · doi:10.2307/2324422
[17] Goldstein, G. R.; Goldstein, J. A.: The best generalized inverse, J. math. Anal. appl. 252, No. 1, 91-101 (2000) · Zbl 0983.15006 · doi:10.1006/jmaa.2000.6927
[18] Grassberger, J.; Hörmann, G.: A note on representations of the finite Heisenberg group and sums of greatest common divisors, Discrete math. Theor. comput. Sci. 4, No. 2, 91-100 (2001) · Zbl 0983.22012 · emis:journals/DMTCS/volumes/abstracts/dm040202.abs.html
[19] Gröchenig, K.: Aspects of Gabor analysis on locally compact abelian groups, Gabor analysis and algorithms: theory and applications, 211-231 (1998) · Zbl 0890.42011
[20] Gröchenig, K.: Foundations of time -- frequency analysis, (2001) · Zbl 0966.42020
[21] Gröchenig, K.; Strohmer, T.: Analysis of pseudodifferential operators of sjöstrand’s class on locally compact abelian groups, J. reine angew. Math. 613, 121-146 (2007) · Zbl 1145.47034
[22] S.D. Howard, A. Calderbank, W. Moran, The finite Heisenberg -- Weyl group in radar and communication, EURASIP Special Issue, 2005
[23] Janssen, A. J. E.M.: Duality and biorthogonality for Weyl -- Heisenberg frames, J. Fourier anal. Appl. 1, No. 4, 403-436 (1995) · Zbl 0887.42028 · doi:10.1007/s00041-001-4017-4
[24] Janssen, A. J. E.M.; Strohmer, T.: Characterization and computation of canonical tight windows for Gabor frames, J. Fourier anal. Appl. 8, No. 1, 1-28 (2002) · Zbl 1001.42023 · doi:10.1007/s00041-002-0001-x
[25] Kaiblinger, N.: Approximation of the Fourier transform and the dual Gabor window, J. Fourier anal. Appl. 11, No. 1, 25-42 (2005) · Zbl 1064.42022 · doi:10.1007/s00041-004-3070-1
[26] Kailath, T.: Measurements on time-variant communication channels, IEEE trans. Inform. theory 8, No. 5, 229-236 (1962) · Zbl 0105.32705
[27] Kutyniok, G.; Strohmer, T.: Wilson bases for general time -- frequency lattices, SIAM J. Math. anal. 37, No. 3, 685-711 (2005) · Zbl 1090.94008 · doi:10.1137/S003614100343723X
[28] Li, S.: Discrete multi-Gabor expansions, IEEE trans. Inform. theory 45, No. 6, 1954-1967 (1999) · Zbl 0957.94004
[29] Löwdin, P. -O.: On the non-orthogonality problem connected with the use of atomic wave functions in the theory of molecules and crystals, J. chem. Phys. 18, 365-375 (1950)
[30] F. Luef, Gabor analysis meets noncommutative geometry, Ph.D. thesis, University of Vienna, 2005
[31] E. Matusiak, Some aspects of Gabor analysis on elementary locally compact Abelian groups, Ph.D. thesis, University of Vienna, 2007
[32] G. Pfander, D. Walnut, Measurement of time-variant channels, IEEE Trans. Inform. Theory (2005), submitted for publication · Zbl 1323.94087
[33] Prinz, P.: Calculating the dual Gabor window for general sampling sets, IEEE trans. Signal process. 44, No. 8, 2078-2082 (1996)
[34] Qiu, S.: Generalized dual Gabor atoms and best approximations by Gabor families, Signal process. 49, 167-186 (1996) · Zbl 0866.94005 · doi:10.1016/0165-1684(96)00015-1
[35] Qiu, S.: Discrete Gabor transforms: the Gabor -- gram matrix approach, J. Fourier anal. Appl. 4, No. 1, 1-17 (1998) · Zbl 0915.65145 · doi:10.1007/BF02475925
[36] Rieffel, M. A.: Projective modules over higher-dimensional noncommutative tori, Can. J. Math. 40, No. 2, 257-338 (1988) · Zbl 0663.46073 · doi:10.4153/CJM-1988-012-9
[37] Ron, A.; Shen, Z.: Frames and stable bases for subspaces of $L2(Rd)$: the duality principle of Weyl -- Heisenberg sets, Proceedings of the Lanczos centenary conference, Raleigh, NC, 422-425 (1993)
[38] Ron, A.; Shen, Z.: Weyl -- Heisenberg frames and Riesz bases in $L2(Rd)$, Duke math. J. 89, No. 2, 237-282 (1997) · Zbl 0892.42017 · doi:10.1215/S0012-7094-97-08913-4
[39] Schulte, J.: Harmonic analysis on finite Heisenberg groups, Eur. J. Combin. 25, No. 3, 327-338 (2004) · Zbl 1045.43011 · doi:10.1016/j.ejc.2003.10.003
[40] T. Strohmer, A unified approach to numerical algorithms for discrete Gabor expansions, in: Proc. SampTA --- Sampling Theory and Applications, Aveiro/Portugal, 1997, pp. 297 -- 302
[41] Strohmer, T.: Pseudodifferential operators and Banach algebras in mobile communications, Appl. comput. Harmon. anal. 20, No. 2, 237-249 (2006) · Zbl 1099.94029 · doi:10.1016/j.acha.2005.06.003
[42] Strohmer, T.; Heath, R. W.: Grassmannian frames with applications to coding and communication, Appl. comput. Harmon. anal. 14, No. 3, 257-275 (2003) · Zbl 1028.42020 · doi:10.1016/S1063-5203(03)00023-X
[43] Sussman, S.: Least square synthesis of radar ambiguity functions, IRE trans. Inform. theory 8, 246-254 (1962) · Zbl 0112.09202
[44] Takesaki, M.: Theory of operator algebras I, Encyclopaedia of mathematical sciences. Operator algebras and non-commutative geometry 124 (5) (2002) · Zbl 0990.46034
[45] Terras, A.: Fourier analysis on finite groups and applications, (1999) · Zbl 0928.43001
[46] Werther, T.; Matusiak, E.; Eldar, Y. C.; Subbana, N. K.: A unified approach to dual Gabor windows, IEEE signal process. Mag. 55, No. 5, 1758-1768 (2007)
[47] Wexler, J.; Raz, S.: Discrete Gabor expansions, Signal process. 21, 1758-1768 (1990)
[48] Weyl, H.: Gruppentheorie und quantenmechanik, XI, (1928) · Zbl 54.0954.03
[49] Wildberger, N.: Weyl quantization and a symbol calculus for abelian groups, J. aust. Math. soc. 78, No. 3, 323-338 (2005) · Zbl 1080.44002 · doi:10.1017/S1446788700008569
[50] Zeevi, Y.; Zibulski, M.: Oversampling in the Gabor scheme, IEEE trans. Signal process. 41, No. 8, 2679-2687 (1993) · Zbl 0800.94088 · doi:10.1109/78.229898
[51] Zeevi, Y.; Zibulski, M.; Porat, M.: Multi-window Gabor schemes in signal and image representations, Gabor analysis and algorithms: theory and applications, 381-407 (1998) · Zbl 0890.42017