×

An adaptive step-down procedure with proven FDR control under independence. (English) Zbl 1162.62069

Summary: We study an adaptive step-down procedure for testing \(m\) hypotheses. It stems from the repeated use of the false discovery rate controlling the linear step-up procedure (sometimes called BH), and makes use of the critical constants \(iq/[(m+1 - i(1 - q)], i=1, \dots , m\). Motivated by its success as a model selection procedure, as well as by its asymptotic optimality, we are interested in its false discovery rate (FDR) controlling properties for a finite number of hypotheses. We prove that this step-down procedure controls the FDR at level \(q\) for independent test statistics. We then numerically compare it with two other procedures with proven FDR control under independence, both in terms of power under independence and FDR control under positive dependence.

MSC:

62J15 Paired and multiple comparisons; multiple testing
65C60 Computational problems in statistics (MSC2010)

Software:

SAM

References:

[1] Abramovich, F., Benjamini, Y., Donoho, D. and Johnstone, I. (2006). Adapting to unknown sparsity by controlling the false discovery rate. Ann. Statist. 34 584-653. · Zbl 1092.62005 · doi:10.1214/009053606000000074
[2] Benjamini, Y. and Gavrilov, Y. (2008). Simple variable selection procedures based on FDR control. Ann. Appl. Statist.
[3] Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. Statist. Soc. Ser. B 57 289-300. JSTOR: · Zbl 0809.62014
[4] Benjamini, Y., Krieger, A. and Yekutieli, D. (2006). Adaptive linear step-up procedures that control the false discovery rate. Biometrica 93 491-507. · Zbl 1108.62069 · doi:10.1093/biomet/93.3.491
[5] Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in multiple testing under dependency. Ann. Statist. 29 1165-1188. · Zbl 1041.62061 · doi:10.1214/aos/1013699998
[6] Dunnett, W. and Tamhane, A. C. (1995). Step-up multiple testing of parameters with unequally correlated estimates. Biometrics 51 217-227. · Zbl 0825.62376 · doi:10.2307/2533327
[7] Finner, H., Dickhaus, T. and Roters, M. (2008). On the false discovery rate and an asymptotically optimal rejection curve. Ann. Statist. 37 596-618. · Zbl 1162.62068 · doi:10.1214/07-AOS569
[8] Sarkar, S. K. (2002). Some results on false discovery rate in stepwise multiple testing procedures. Ann. Statist. 30 239-257. · Zbl 1101.62349 · doi:10.1214/aos/1015362192
[9] Storey, J. D. (2002). A direct approach to false discovery rates. J. R. Stat. Soc. Ser. B Stat. Methodol. 64 479-498. JSTOR: · Zbl 1090.62073 · doi:10.1111/1467-9868.00346
[10] Storey, J. D., Taylor, J. E. and Siegmund, D. (2004). Strong control, conservative point estimation, and simultaneous conservative consistency of false discovery rates: A unified approach. J. R. Stat. Soc. Ser. B Stat. Methodol. 66 187-205. JSTOR: · Zbl 1061.62110 · doi:10.1111/j.1467-9868.2004.00439.x
[11] Storey, J. D. and Tibshirani, R. (2003). SAM thresholding and false discovery rates for detecting differential gene expression in DNA microarrays. In The Analysis of Gene Expression Data: Methods and Software (G. Parmigiani, E. S. Garrett, R. A. Irizarry and S. L. Zeger, eds.) 272-290. Springer, New York. · doi:10.1007/0-387-21679-0_12
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.