zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Estimation of Hurst exponent revisited. (English) Zbl 1162.62404
Summary: In order to estimate the Hurst exponent of long-range dependent time series numerous estimators such as based, e.g., on rescaled range statistic (R/S) or detrended fluctuation analysis (DFA) are traditionally employed. Motivated by empirical behaviour of the bias of R/S estimator, its bias-corrected version is proposed. It has smaller mean squared error than DFA and behaves comparably to wavelet estimator for traces of size as large as $2^{15}$ drawn from some commonly considered long-range dependent processes. It is also shown that several variants of R/S and DFA estimators are possible depending on the way they are defined and that they differ greatly in their performance.

MSC:
62M10Time series, auto-correlation, regression, etc. (statistics)
62F10Point estimation
65T60Wavelets (numerical methods)
62G05Nonparametric estimation
Software:
LASS
WorldCat.org
Full Text: DOI
References:
[1] Andrews, D. W.; Sun, Y.: Adaptive local polynomial whittle estimation of long-range dependence. Econometrica 72, 569-614 (2004) · Zbl 1131.62317
[2] Anis, A. A.; Lloyd, E. H.: The expected value of the adjusted rescaled Hurst range of independent normal summands. Biometrika 63, 111-116 (1976) · Zbl 0347.60061
[3] Arteche, J.: Gaussian semiparametric estimation in long memory in stochastic volatility and signal plus noise models. J. econometrics 119, 31-154 (2004)
[4] Beran, J.: Statistics for long memory processes. (1994) · Zbl 0869.60045
[5] Davies, R. B.; Harte, D. S.: Tests for Hurst effect. Biometrika 74, 95-101 (1987) · Zbl 0612.62123
[6] Geweke, J.; Porter-Hudak, S.: The estimation and application of long memory time series model. J. time ser. Anal. 4, 221-228 (1983) · Zbl 0534.62062
[7] Giraitis, L.; Kokoszka, P.; Leipus, R.; Teyssiere, G.: Rescaled variance and related tests for long memory in volatility and levels. J. econometrics 112, 2265-2294 (2003) · Zbl 1027.62064
[8] Hall, P.; Härdle, W.; Kleinow, T.; Schmidt, P.: Semiparametric bootstrap approach to confidence intervals for the Hurst coefficient. Statist. inference for stochastic processes 3, 263-276 (2001)
[9] Henry, M., Robinson, P.M., 1996. Bandwidth choice in Gaussian semiparametric estimation of long range dependence. In: Robinson, P.M., Rosenblatt, M. (Eds.), Athens Conference on Applied Probability and Time Series, vol. 2, 220 -- 232.
[10] Hurst, H. R.: Long-term storage in reservoirs. Trans. amer. Soc. civil eng. 116, 770-799 (1951)
[11] Hurvich, C. M.; Ray, B. K.: The local whittle estimator of long-memory stochastic volatility. J. financial econometrics 1, 445-470 (2003)
[12] Hurvich, C. M.; Moulines, E.; Soulier, P.: Estimating long memory in volatility. Econometrica 73, 1283-1328 (2005) · Zbl 1151.91702
[13] Kennedy, D.: The distribution of the maximum Brownian excursion. J. appl. Probab. 13, 371-376 (1976) · Zbl 0338.60048
[14] Kwiatkowski, D.; Phillips, P. C. B.; Schmidt, P.; Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root: how sure are we that economic time series have a unit root?. J. econometrics 54, 159-178 (1992) · Zbl 0871.62100
[15] Lai, D.: Estimating the Hurst effect and its applications in monitoring clinical trials. Comput. statist. Data anal. 45, 549-562 (2004) · Zbl 05373967
[16] Lo, A. W.: Long-memory in stock-market prices. Econometrica 59, 1279-1313 (1991) · Zbl 0781.90023
[17] Mandelbrot, B.: Limit theorems of the self-normalized range for weakly and strongly dependent processes. Z. wahrscheinlichkeitstheorie und verwandene gebiete 31, 271-285 (1975) · Zbl 0288.60033
[18] Meyer, I.: Wavelets, algorithms and applications. (1993) · Zbl 0821.42018
[19] Mielniczuk, J.; Wojdyłło, P.: Wavelets for time series data --- a survey and new results. Control & cybernet. 34, 1093-1126 (2005) · Zbl 1111.62081
[20] Peng, C. K.; Buldyrev, S. V.; Simons, M.; Stanley, H. E.; Goldberger, A. L.: Mosaic organization of DNA nucleotides. Phys. rev. E 49, 1685-1689 (1994)
[21] Percival, D. B.; Walden, A. T.: Wavelet methods for time series analysis. (2000) · Zbl 0963.62079
[22] Peters, E. E.: Fractal market analysis. (1994) · Zbl 0813.90029
[23] Robinson, P. M.: Time series with strong dependence. Advances of econometrics. Sixth world congress, 147-195 (1994)
[24] Robinson, P. M.: Gaussian semiparametric estimation of time series with long-range dependence. Ann. statist. 23, 1630-1661 (1995) · Zbl 0843.62092
[25] Stoev, S.; Taqqu, M.; Park, C.; Michailidis, G.; Marron, J. S.: LASS: a tool for the local analysis of self-similarity. Comput. statist. Data anal. 50, 2447-2471 (2006) · Zbl 05381686
[26] Taqqu, M.; Teverovsky, V.; Willinger, W.: Estimators for long-range dependence: empirical study. Fractals 3, 785-798 (1995) · Zbl 0864.62061
[27] Teverovsky, V.; Taqqu, M.; Willinger, W.: A critical look at lo’s modified R/S statistic. J. statist. Plann. inference 80, 211-227 (1999) · Zbl 1044.60508
[28] Veitch, D.; Abry, P.: A wavelet-based joint estimator of the parameters of long-range dependence. IEEE trans. Inform. theory 45, 878-897 (1999) · Zbl 0945.94006
[29] Veitch, D.; Taqqu, M. S.; Abry, P.: Meaningful MRA initialisation for discrete time series. Signal process. 80, 1971-1983 (2000) · Zbl 1035.94520
[30] Veitch, D.; Taqqu, M. S.; Abry, P.: On automatic selection of the onset of scaling. Fractals 11, 377-390 (2003) · Zbl 1056.62102
[31] Weron, R.: Estimating long-range dependence: finite sample properties and confidence intervals. Phys. A 31, 285-299 (2001) · Zbl 0997.91030
[32] Whittle, P.: Estimation and information in stationary time series. Ark. mat. 2, 423-434 (1953) · Zbl 0053.41003