×

zbMATH — the first resource for mathematics

Robust estimation for ARMA models. (English) Zbl 1162.62405
Summary: This paper introduces a new class of robust estimates for ARMA models. They are M-estimates, but the residuals are computed so the effect of one outlier is limited to the period where it occurs. These estimates are closely related to those based on a robust filter, but they have two important advantages: they are consistent and the asymptotic theory is tractable. We perform a Monte Carlo where we show that these estimates compare favorably with respect to standard M-estimates and to estimates based on a diagnostic procedure.

MSC:
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62F10 Point estimation
62F35 Robustness and adaptive procedures (parametric inference)
65C05 Monte Carlo methods
Software:
robustbase
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bianco, A. M., Garcia Ben, M., Martinez, E. and Yohai, V. J. (1996). Robust procedures for regression models with ARIMA errors. In COMPSTAT 96. Proceeding of Computational Statistics (A. Prat, ed.) 27-38. Physica-Verlag, Heidelberg. · Zbl 0900.62482
[2] Brubacher, S. R. (1974). Time series outlier detection and modeling with interpolation. Bell Laboratories Technical Memo.
[3] Bustos, O. H. and Yohai, V. J. (1986). Robust estimates for ARMA models. J. Amer. Statist. Assoc. 81 155-168. JSTOR:
[4] Chang, I., Tiao, G. C. and Chen, C. (1988). Estimation of time series parameters in the presence of outliers. Technometrics 30 193-204. JSTOR:
[5] Chen, C. and Liu, L. M. (1993). Joint estimation of model parameters and outlier effects in time series. J. Amer. Statist. Assoc. 88 284-297. · Zbl 0775.62229
[6] Davidson, J. (1994). Stochastic Limit Theory: An Introduction for Econometricians . Oxford Univ. Press, Oxford. · Zbl 0904.60002
[7] Davis, R. A., Knight, K. and Liu, J. (1992). M-estimation for autoregression with infinite variance. Stochastic Process. Appl. 40 145-180. · Zbl 0801.62081
[8] Davis, R. A. (1996). Gauss-Newton and M-estimation for ARMA processes with infinite variance. Stochastic Process. Appl. 63 75-95. · Zbl 0902.62102
[9] Fox, A. J. (1972). Outliers in time series. J. Roy. Statist. Soc. Ser. B 34 350-363. JSTOR: · Zbl 0249.62089
[10] Genton, M. G. and Lucas, A. (2003). Comprehensive definitions of breakdown-points for independent and dependent observations. J. Roy. Statist. Soc. Ser. B 65 81-94. JSTOR: · Zbl 1063.62038
[11] Hampel, F. R. (1974). The influence curve and its role in robust estimation. J. Amer. Statist. Assoc. 69 383-393. JSTOR: · Zbl 0305.62031
[12] Huber, P. (1964). Robust estimation of a location parameter. Ann. Math. Statist. 53 73-101. · Zbl 0136.39805
[13] Huber, P. (1981). Robust Statistics . Wiley, New York. · Zbl 0536.62025
[14] Künsch, H. (1984). Infinitesimal robustness for autoregressive processes. Ann. Statist. 12 843-863. · Zbl 0587.62077
[15] Mancini, L., Ronchetti, E. and Trojani, F. (2005). Optimal conditionally unbiased bounded-influence inference in dynamic location and scale models. J. Amer. Statist. Assoc. 100 628-641. · Zbl 1117.62396
[16] Maronna, R. A., Martin, R. D. and Yohai, V. J. (2006). Robust Statistics: Theory and Methods . Wiley, London. · Zbl 1094.62040
[17] Martin, R. D. and Yohai, V. J. (1986). Influence functionals for time series. Ann. Statist. 14 781-818. · Zbl 0608.62042
[18] Martin, R. D. and Yohai, V. (1996). Highly robust estimation of autoregressive integrated time series models. Publicaciones Previas No. 79, Facultad de Ciencias Exactas y Naturales, Univ. Buenos Aires. Available at http://mate.dm.uba.ar/ vyohai/Martin-Yohai-1996.pdf.
[19] Martin, R. D., Samarov, A. and Vandaele W. (1983). Robust methods for ARIMA models. In Applied Time Series Analysis of Economic Data (E. Zellner, ed.) 153-177. Washington Bureau of the Census.
[20] Masreliez, C. J. (1975). Approximate non-Gaussian filtering with linear state and observation relations. IEEE Trans. Automat. Control 20 107-110. · Zbl 0298.93018
[21] Muler, N., Peña, D. and Yohai, V. J. (2007). Robust estimates for ARMA models. Technical report. Available at http://mate.dm.uba.ar/ vyohai/techrep-muler-pena-yohai.pdf. · Zbl 1162.62405
[22] Peña, D. (1990). Influential observations in time series. J. Bus. Econom. Statist. 8 235-241. · Zbl 0800.62557
[23] Tsay, R. S. (1986). Time series model specification in the presence of outliers. J. Amer. Statist. Assoc. 81 132-141.
[24] Yohai, V. J. (1985). High breakdown-point and high efficiency robust estimates for regression. Technical Report # 66, Dept. Statistics, Univ. Washington. Available at http://www.stat.washington.edu/research/reports/1985/tr066.pdf. · Zbl 0624.62037
[25] Yohai, V. J. (1987). High breakdown point and high efficiency estimates for regression. Ann. Statist. 15 642-665. · Zbl 0624.62037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.