zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Control of stochastic chaos using sliding mode method. (English) Zbl 1162.65062
Deterministic chaotic systems perturbed by a white noise are studied. Sliding mode control and Lyapunov based control are used for stabilizing unstable periodic orbits. The proposed control algorithm is applied to the stochastic Duffing and Van der Pol systems.

MSC:
65P20Numerical chaos
65C30Stochastic differential and integral equations
37H10Generation, random and stochastic difference and differential equations
37C27Periodic orbits of vector fields and flows
37C75Stability theory
93E25Computational methods in stochastic control
WorldCat.org
Full Text: DOI
References:
[1] Ott, E.; Grebogi, C.; Yorke, J. A.: Controlling chaos, Phys. rev. Lett. 64, 1196-1199 (1990) · Zbl 0964.37501 · doi:10.1103/PhysRevLett.64.1196
[2] Auerbach, D.; Grebogi, C.; Ott, E.; Yorke, J. A.: Controlling chaos in high dimensional systems, Phys. rev. Lett. 69, 3479-3482 (1992) · Zbl 0964.37502 · doi:10.1103/PhysRevLett.69.3479
[3] Ding, M.; Yang, W.; In, V.; Ditto, W. L.; Spano, M. L.; Gluckman, B.: Controlling chaos in high dimensions: theory and experiment, Phys. rev. E 53, 4334-4344 (1996)
[4] Pyragas, K.: Continuous control of chaos by self-controlling feedback, Phys. lett. A 170, 421-428 (1992)
[5] Gallegos, J. A.: Nonlinear regulation of a Lorenz system by feedback linearization technique, J. dynam. Control 4, 277-298 (1994) · Zbl 0825.93547 · doi:10.1007/BF01985075
[6] Alasty, A.; Salarieh, H.: Nonlinear feedback control of chaotic pendulum in presence of saturation effect, Chaos solitons fractals 31, 292-304 (2005) · Zbl 1142.93342 · doi:10.1016/j.chaos.2005.10.004
[7] Salarieh, H.; Shahrokhi, M.: Indirect adaptive control of discrete chaotic systems, Chaos solitons fractals 34, 1188-1201 (2007) · Zbl 1142.93359 · doi:10.1016/j.chaos.2006.03.115
[8] Konishi, K.; Hirai, M.; Kokame, H.: Sliding mode control for a class of chaotic systems, Phys. lett. A 245, 511-517 (1998)
[9] Tsai, H. H.; Fuh, C. C.; Chang, C. N.: A robust controller for chaotic systems under external excitation, Chaos solitons fractals 14, 627-632 (2002) · Zbl 1005.93019 · doi:10.1016/S0960-0779(01)00213-2
[10] Nazzal, J. M.; Natsheh, A. N.: Chaos control using sliding mode theory, Chaos solitons fractals 33, 695-702 (2007)
[11] Park, J. H.: Controlling chaotic systems via nonlinear feedback control, Chaos solitons fractals 23, 1049-1054 (2005) · Zbl 1061.93508 · doi:10.1016/j.chaos.2004.06.016
[12] Ucar, A.: Model reference control of chaotic systems, Chaos solitons fractals 31, 712-717 (2007)
[13] Hsiao, Y. C.; Tung, P. C.: Global chaos control of non-autonomous systems, J. sound vibration 254, 163-174 (2002) · Zbl 1237.34119
[14] Calvo, O.; Cartwright, J. H. E.: Fuzzy control of chaos, Internat. J. Bifur. chaos 8, 1743-1747 (1998) · Zbl 0941.93526 · doi:10.1142/S0218127498001443
[15] Alasty, A.; Salarieh, H.: Controlling the chaos using fuzzy estimation of OGY and pyragas controllers, Chaos solitons fractals 26, 379-392 (2005) · Zbl 1153.93431 · doi:10.1016/j.chaos.2004.12.034
[16] Hsu, F. C.; Lin, C. M.: Fuzzy-identification-based adaptive controller design via backstepping approach, Fuzzy sets and systems 151, 43-57 (2005) · Zbl 1142.93357 · doi:10.1016/j.fss.2004.06.015
[17] Oksendal, B.: Stochastic differential equations, (1992)
[18] Kapitaniak, T.: Chaos in systems with noise, (1990) · Zbl 0761.60001
[19] Chan, K. S.; Tong, H.: A note on noisy chaos, J. R. Stat. soc. Ser. B (Methodol.) 56, 301-311 (1994) · Zbl 0825.93713
[20] Wu, C.; Lei, Y.; Fang, T.: Stochastic chaos in a Duffing oscillator and its control, Chaos solitons fractals 27, 459-469 (2005) · Zbl 1102.37312 · doi:10.1016/j.chaos.2005.04.035
[21] Pascual, M.; Mazzega, P.: Quasicycles revisited: apparent sensitivity to initial conditions, Theoret. popul. Biol. 64, 385-395 (2003) · Zbl 1102.92060 · doi:10.1016/S0040-5809(03)00086-8
[22] Freeman, W. J.: A proposed name for aperiodic brain activity: stochastic chaos, Neural netw. 13, 11-13 (2000)
[23] Bilings, L.; Bollt, E. M.; Schwartz, I. B.: Phase-space transport of stochastic chaos in population dynamics of virus spread, Phys. rev. Lett. 88 (2002)
[24] Patnaik, P. R.: The extended Kalman filter as a noise modulator for continuous yeast cultures under monotonic, oscillating and chaotic conditions, Chem. eng. J. 108, 91-99 (2005)
[25] Kikunchi, N.; Ohtsubo, Y. L. J.: Chaos control and noise suppression in external-cavitysemiconductor lasers, IEEE J. Quantum electron. 33, 56-65 (1997)
[26] Kyrtsou, C.; Terraza, M.: Stochastic chaos or ARCH effects in stock series? A comparative study, Int. rev. Financial analysis 11, 407-431 (2002)
[27] Astrom, K. J.: Introduction to stochastic control theory, (1970)
[28] E. Scholl, J. Pomplun, A. Amann, A.G. Balanov, N.B. Janson, Time-delay feedback control of nonlinear stochastic oscillations, in: Proceedings of ENOC2005, Eindhoven, Netherlands, August 7--11, 2005
[29] Salarieh, H.; Alasty, A.: Adaptive control of chaotic systems with stochastic time varying unknown parameters, Chaos solitons fractals 38, 168-177 (2008) · Zbl 1142.93358 · doi:10.1016/j.chaos.2006.10.063
[30] Khalil, H. K.: Nonlinear systems, (2001) · Zbl 1055.93064
[31] Slotine, J. J.; Li, W.: Applied nonlinear control, (1991) · Zbl 0753.93036
[32] Bruckner, A. M.; Judith, B.; Thomson, B. S.: Real analysis, (1996) · Zbl 0872.26001
[33] Ramesh, M.; Narayanan, S.: Chaos control of bonhoeffer--van der Pol oscillator using neural networks, Chaos solitons fractals 12, 2395-2405 (2001) · Zbl 1004.37067 · doi:10.1016/S0960-0779(00)00200-9
[34] Bu, S.; Wang, B-H.; Jiang, P-Q.: Detecting unstable periodic orbits in chaotic systems by using an efficient algorithm, Chaos solitons fractals 22, 237-241 (2004) · Zbl 1067.37039 · doi:10.1016/j.chaos.2003.12.089