zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An overview on the simplex algorithm. (English) Zbl 1162.65355
Summary: The simplex algorithm and its variants are investigated. First, we define a new concept called formal tableau, which leads to derive easily the dual solution from the latest primal table; without any distinction between the original variables and the slack ones. Second, we propose a new method for initializing the simplex algorithm. Unlike the two-phase and the big-M methods, our technique does not involve artificial variables. The computational results reveal that this new method is very favorable especially when the number of artificial variables is significant. Finally, this method will be combined with the notion of formal tableau leading naturally to a second new approach.

65K05Mathematical programming (numerical methods)
90C05Linear programming
Full Text: DOI
[1] P. Borne, A. El-Kamel, K. Mellouli, Programmation linéaire et applications: éléments de cours et exercices résolus, Edition Technip, Paris, 2004.
[2] Dantzig, G. B.: Maximization of a linear function of variables subject to linear inequalities, Activity analysis of production and allocation, 339-347 (1951) · Zbl 0045.09802
[3] Dantzig, G. B.: Linear programming and extensions, (1963) · Zbl 0108.33103
[4] Dantzig, G. B.; Thapa, M. N.: Linear programming 1: introduction, (1997) · Zbl 0883.90090
[5] Dantzig, G. B.; Thapa, M. N.: Linear programming 2: theory and extensions, (2003) · Zbl 1029.90037
[6] Goldfarb, D.; Reid, J. K.: A practical steepest-edge simplex algorithm, Mathematical programming 12, 361-371 (1977) · Zbl 0443.90058 · doi:10.1007/BF01593804
[7] C. Guéret, C. Prins, M. Sevaux, Programmation linéaire, Eyrolles, France, 2000.
[8] Hadley, G.: Linear programming, (1962) · Zbl 0102.36304
[9] Hu, J. F.: A note on ”an improved initial basis for the simplex algorithm”, Computers and operations research 34, 3397-3401 (2007) · Zbl 1165.90566 · doi:10.1016/j.cor.2006.02.004
[10] A. Martel, Techniques et applications de la recherche opérationnelle 2e édition, Gaëten Morin Éditeur, Canada, 1979.
[11] H. Nabli, Nouvelle méthode de recherche d’une base réalisable initiale pour l’algorithme du simplexe, in: Proceedings of the XIII Congress of International Association for Fuzzy-Set Management and Economy, ISBN: 978-9973-9979-0-6, Hammamet, Tunisia, 2006.
[12] H. Nabli, Recherche opérationnelle: algorithme du simplexe et ses applications, Centre de Publication Universitaire, Tunisia, 2006, <www.cpu.rnu.tn>.
[13] Y. Nobert, R. Ouellet, R. Parent, Problèmes résolus de recherche opérationnelle, Gaëten Morin Éditeur, Canada, 1999.
[14] Y. Nobert, R. Ouellet, R. Parent, La recherche opérationnelle, 3e édition, Gaëten Morin Éditeur, Canada, 2001.
[15] Pan, P. Q.: Primal perturbation simplex algorithms for linear programming, Journal of computational mathematics 18, No. 6, 587-596 (2000) · Zbl 0985.65064
[16] Paparrizos, P.; Samars, N.; Stephanides, G.: A new efficient primal dual simplex algorithm, Computers and operations research 30, 1383-1399 (2003) · Zbl 1031.90011 · doi:10.1016/S0305-0548(02)00077-1
[17] Todd, M. J.: The many facets of linear programming, Mathematical programming series B 91, 417-436 (2002) · Zbl 1030.90051 · doi:10.1007/s101070100261
[18] Wolfe, C. S.: Linear programming with basic and Fortran, (1985)
[19] Zionts, S.: Linear and integer programming, (1974)
[20] http://people.brunel.ac.uk/ mastjjb/jeb/or/lpmore.html.
[21] http://www.cirl.uoregon.edu/PBLIB/.