zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A new measure of uncertainty based on knowledge granulation for rough sets. (English) Zbl 1162.68666
Summary: In rough set theory, accuracy and roughness are used to characterize uncertainty of a set and approximation accuracy is employed to depict accuracy of a rough classification. Although these measures are effective, they have some limitations when the lower/upper approximation of a set under one knowledge is equal to that under another knowledge. To overcome these limitations, we address in this paper the issues of uncertainty of a set in an information system and approximation accuracy of a rough classification in a decision table. An axiomatic definition of knowledge granulation for an information system is given, under which these three measures are modified. Theoretical studies and experimental results show that the modified measures are effective and suitable for evaluating the roughness and accuracy of a set in an information system and the approximation accuracy of a rough classification in a decision table, respectively, and have a much simpler and more comprehensive form than the existing ones.

68T30Knowledge representation
68T37Reasoning under uncertainty
Full Text: DOI
[1] Bazan, J.; Peters, J. F.; Skowron, A.; Nguyen, H. S.; Szczuka, M.: Rough set approach to pattern extraction from classifiers, Electronic notes in theoretical computer science 82, No. 4, 1-10 (2003) · Zbl 1270.68306
[2] Beaubouef, T.; Petry, F. E.; Arora, G.: Information-theoretic measures of uncertainty for rough sets and rough relational databases, Information sciences 109, 185-195 (1998)
[3] G.J. Klir, Basic issues of computing with granular computing, in: Proceedings of IEEE International Conference on Fuzzy Systems, 1998, pp. 101 -- 105.
[4] Liang, J. Y.; Qu, K. S.: Information measures of roughness of knowledge and rough sets for information systems, Journal of systems science and systems engineering 10, No. 1, 95-103 (2002)
[5] Liang, J. Y.; Li, D. Y.: Uncertainty and knowledge acquisition in information systems, (2005)
[6] Liang, J. Y.; Chin, K. S.; Dang, C. Y.; Yam, C. M.: A new method for measuring uncertainty and fuzziness in rough set theory, International journal of general systems 31, No. 4, 331-342 (2002) · Zbl 1010.94004
[7] Liang, J. Y.; Shi, Z. Z.: The information entropy rough entropy knowledge granulation in rough set theory, International journal of uncertainty, fuzziness and knowledge-based systems 12, No. 1, 37-46 (2004) · Zbl 1074.68072 · doi:10.1142/S0218488504002631
[8] Liang, J. Y.; Shi, Z. Z.; Li, D. Y.: Information entropy, rough entropy and knowledge granulation in incomplete information systems, International journal of general systems 35, No. 6, 641-654 (2006) · Zbl 1115.68130 · doi:10.1080/03081070600687668
[9] Lin, T. Y.: Granular computing on binary relations I: Data mining and neighborhood systems, II: Rough sets representations and belief functions, Rough sets in knowledge discovery 1, 107-140 (1998)
[10] Pal, S. K.; Pedrycz, W.; Skowron, A.; Swiniarski, R.: Presenting the special issue on rough-neuro computing, Neurocomputing 36, 1-3 (2001)
[11] Pawlak, Z.: Rough sets, International journal of computer and information science 11, 341-356 (1982) · Zbl 0501.68053
[12] Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data, (1991) · Zbl 0758.68054
[13] Pawlak, Z.: Some remarks on conflict analysis, Europe journal of operational research 166, No. 3, 649-654 (2005) · Zbl 1097.91010 · doi:10.1016/j.ejor.2003.09.038
[14] Pawlak, Z.; Skowron, A.: Rudiments of rough sets, Information sciences 177, 3-27 (2007) · Zbl 1142.68549 · doi:10.1016/j.ins.2006.06.003
[15] Pawlak, Z.; Skowron, A.: Rough sets: some extensions, Information sciences 177, 28-40 (2007) · Zbl 1142.68550 · doi:10.1016/j.ins.2006.06.006
[16] Pawlak, Z.; Skowron, A.: Rough sets and Boolean reasoning, Information sciences 177, 41-73 (2007) · Zbl 1142.68551 · doi:10.1016/j.ins.2006.06.007
[17] Pawlak, Z.; Wong, S. K. M.; Ziarko, W.: Rough sets: probabilistic versus deterministic approach, International journal of man -- machine studies 29, 81-95 (1988) · Zbl 0663.68094 · doi:10.1016/S0020-7373(88)80032-4
[18] Z. Pawlak, Granularity of knowledge, indiscernibility and rough sets, in: Proceedings of IEEE International Conference on Computing and Information, vol. I, 1988, pp. 186 -- 189.
[19] Qian, Y. H.; Liang, J. Y.: Combination entropy and combination granulation in rough set theory, International journal of uncertainty, fuzziness and knowledge-based systems 16, No. 2, 179-193 (2008) · Zbl 1154.68520 · doi:10.1142/S0218488508005121
[20] Qian, Y. H.; Liang, J. Y.; Li, D. Y.; Zhang, H. Y.; Dang, C. Y.: Measures for evaluating the decision performance of a decision table in rough set theory, Information sciences 178, No. 1, 181-202 (2008) · Zbl 1128.68102 · doi:10.1016/j.ins.2007.08.010
[21] Shannon, C. E.: The mathematical theory of communication, The Bell system technical journal 27, No. 3 and 4, 373-423 (1948) · Zbl 1154.94303
[22] Shi, Z. Z.: Knowledge discovery, (2002)
[23] Wierman, M. J.: Measuring uncertainty in rough set theory, International journal of general systems 28, 283-297 (1999) · Zbl 0938.93034 · doi:10.1080/03081079908935239
[24] Xu, B. W.; Zhou, Y. M.; Lu, H. M.: An improved accuracy measure for rough sets, Journal of computer and system sciences 71, 163-173 (2005) · Zbl 1076.68078 · doi:10.1016/j.jcss.2005.02.002
[25] Y.Y. Yao, Granular computing on basic issues and possible solutions, in: Proceedings of the Fifth International Conference on Computing and Information, vol. I, 2000, pp. 186 -- 189.
[26] Zadeh, L. A.: Fuzzy sets and information granularity, Advances in fuzzy set theory and application, 3-18 (1979)
[27] Zadeh, L. A.: Fuzzy logic=computing with words, IEEE transactions on fuzzy systems 4, No. 1, 103-111 (1996)
[28] Zadeh, L. A.: Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic, Fuzzy sets and systems 90, 111-127 (1997) · Zbl 0988.03040 · doi:10.1016/S0165-0114(97)00077-8
[29] Zhang, L.; Zhang, B.: Fuzzy reasoning model under quotient space structure, Information sciences 173, No. 4, 353-364 (2005) · Zbl 1088.68170 · doi:10.1016/j.ins.2005.03.005
[30] The UCI machine learning repository, <http://mlearn.ics.uci.edu/MLRepository.html>.