zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Discernibility matrix simplification for constructing attribute reducts. (English) Zbl 1162.68704
Summary: This paper proposes a reduct construction method based on discernibility matrix simplification. The method works in a similar way to the classical Gaussian elimination method for solving a system of linear equations. Elementary matrix simplification operations are introduced. Each operation transforms a matrix into a simpler form. By applying these operations a finite number of times, one can transform a discernibility matrix into one of its minimum (i.e., the simplest) forms. Elements of a minimum discernibility matrix are either the empty set or singleton subsets, in which the union derives a reduct. With respect to an ordering of attributes, which is either computed based on a certain measure of attributes or directly given by a user, two heuristic reduct construction algorithms are presented. One algorithm attempts to exclude unimportant attributes from a reduct, and the other attempts to include important attributes in a reduct.

68T37Reasoning under uncertainty
Full Text: DOI
[1] J.G. Bazan, H.S. Nguyen, S.H. Nguyen, P. Synak, J. Wroblewski, Rough set algorithms in classification problem, in: L. Polkowski, S. Tsumoto, T.Y. Lin (Eds.), Rough Set Methods and Applications, 2000, pp. 49 -- 88. · Zbl 0992.68197
[2] Beaubouef, T.; Petry, F. E.; Arora, G.: Information-theoretic measures of uncertainty for rough sets and rough relational databases, Information sciences 109, 185-195 (1998)
[3] Bhatt, R. B.; Gopal, M.: On the compact computational domain of fuzzy-rough sets, Pattern recognition letters 6, 1632-1640 (2005)
[4] Chen, D. G.; Wang, C. Z.; Hu, Q. H.: A new approach to attribute reduction of consistent and inconsistent covering decision systems with covering rough sets, Information sciences 177, 3500-3518 (2007) · Zbl 1122.68131 · doi:10.1016/j.ins.2007.02.041
[5] Fishburn, P. C.: Utility theory for decision-making, (1970) · Zbl 0213.46202
[6] Guan, J. W.; Bell, D. A.: Rough computational methods for information systems, Artificial intelligence 105, 77-103 (1998) · Zbl 0909.68047 · doi:10.1016/S0004-3702(98)00090-3
[7] Han, S. Q.; Wang, J.: Reduct and attribute order, Journal of computer science and technology 19, 429-449 (2004)
[8] Hu, F.; Wang, G. Y.: Quick reduction algorithm based on attribute order, Chinese journal of computers 30, 1429-1435 (2007)
[9] Hu, Q. H.; Xie, Z. X.; Yu, D. R.: Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation, Pattern recognition 40, 3509-3521 (2007) · Zbl 1129.68073 · doi:10.1016/j.patcog.2007.03.017
[10] Hu, Q. H.; Yu, D. R.; Xie, Z. X.: Information-preserving hybrid data reduction based on fuzzy-rough techniques, Pattern recognition letters 27, 414-423 (2006)
[11] Jensen, R.; Shen, Q.: Semantics-preserving dimensionality reduction: rough and fuzzy-rough-based approaches, IEEE transactions on knowledge and data engineering 16, 1457-1471 (2004)
[12] Leung, Y.; Wu, W. Z.; Zhang, W. X.: Knowledge acquisition in incomplete information systems: a rough set approach, European journal of operational research 168, 164-180 (2006) · Zbl 1136.68528 · doi:10.1016/j.ejor.2004.03.032
[13] Liang, H. L.; Wang, J.; Yao, Y. Y.: User-oriented feature selection for machine learning, Computer journal 50, 421-434 (2007)
[14] Liang, J. Y.; Shi, Z. Z.: The information entropy, rough entropy and knowledge granulation in rough set theory, International journal of uncertainty, fuzziness and knowledge-based systems 12, 3746 (2004) · Zbl 1074.68072 · doi:10.1142/S0218488504002631
[15] Mi, J. S.; Wu, W. Z.; Zhang, W. X.: Approaches to knowledge reduction based on variable precision rough set model, Information sciences 159, 255-272 (2004) · Zbl 1076.68089 · doi:10.1016/j.ins.2003.07.004
[16] Nguyen, H. S.: On the decision table with maximal number of reducts, Electronic notes in theoretical computer science 82, 198-205 (2003) · Zbl 1270.68319
[17] Nguyen, H. S.: Approximate Boolean reasoning: foundations and applications in data mining, Transactions on rough sets 5, 334-506 (2006) · Zbl 1136.68497 · doi:10.1007/11847465_16
[18] S.H. Nguyen, H.S. Nguyen, Some efficient algorithms for rough set methods, in: Proceedings of the International Conference on Information Processing and Management of Uncertainty on Knowledge Based Systems, 1996, pp. 1451 -- 1456.
[19] Pawlak, Z.: Rough sets, International journal of computer information and science 11, 341-356 (1982) · Zbl 0501.68053
[20] Pawlak, Z.: Rough sets: theoretical aspects of reasoning about data, (1991) · Zbl 0758.68054
[21] Pawlak, Z.; Skowron, A.: Rudiments of rough sets, Information sciences 177, 3-27 (2007) · Zbl 1142.68549 · doi:10.1016/j.ins.2006.06.003
[22] Pawlak, Z.; Skowron, A.: Rough sets and Boolean reasoning, Information sciences 177, 41-73 (2007) · Zbl 1142.68551 · doi:10.1016/j.ins.2006.06.007
[23] Quafafou, M.: $\alpha $-RST: a generalization of rough set theory, Information sciences 124, 301-316 (2000) · Zbl 0957.68114 · doi:10.1016/S0020-0255(99)00075-4
[24] Roberts, F. S.: Measurement theory, (1976) · Zbl 0362.92023
[25] RSES. <http://alfa.mimuw.edu.pl/ rses>.
[26] Skowron, A.; Rauszer, C.: The discernibility matrices and functions in information systems, Handbook of applications and advances of the rough sets theory (1992)
[27] Swiniarski, R. W.: Rough sets methods in feature reduction and classification, International journal of applied mathematics and computer science 11, 565-582 (2001) · Zbl 0990.68130
[28] Wang, G. Y.; Yu, H.; Yang, D.: Decision table reduction based on conditional information entropy, Chinese journal of computers 25, 759-766 (2002)
[29] Wang, J.; Miao, D. Q.: Analysis on attribute reduction strategies of rough set, Chinese journal of computer science and technology 13, 189-192 (1998) · Zbl 0902.68049 · doi:10.1007/BF02946606
[30] Wang, J.; Wang, J.: Reduction algorithms based on discernibility matrix: the ordered attributes method, Journal of computer science and technology 16, 489-504 (2001) · Zbl 1014.68160 · doi:10.1007/BF02943234
[31] Wong, S. K. M.; Ziarko, W.: On optimal decision rules in decision tables, Bulletin of Polish Academy of sciences 33, 693-696 (1985) · Zbl 0606.68091
[32] Wu, W. Z.; Zhang, M.; Li, H. Z.; Mi, J. S.: Knowledge reduction in random information systems via Dempster -- Shafer theory of evidence, Information sciences 174, 143-164 (2005) · Zbl 1088.68169 · doi:10.1016/j.ins.2004.09.002
[33] Y.Y. Yao, Y. Zhao, J. Wang, S.Q. Han, A model of machine learning based on user preference of attributes, in: Proceedings of International Conference on Rough Sets and Current Trends in Computing, 2006, pp. 587 -- 596. · Zbl 1162.68588 · doi:10.1007/11908029_61
[34] Zhao, K.; Wang, J.: A reduction algorithm meeting users’ requirements, Journal of computer science and technology 17, 578-593 (2002) · Zbl 1057.68026 · doi:10.1007/BF02948826
[35] Zhu, W.; Wang, F. Y.: Reduction and axiomization of covering generalized rough sets, Information sciences 152, 217-230 (2003) · Zbl 1069.68613 · doi:10.1016/S0020-0255(03)00056-2
[36] Zhu, W.; Wang, F. Y.: On three types of covering-based rough sets, IEEE transactions on knowledge and data engineering 19, 1131-1144 (2007)
[37] W. Ziarko, Rough set approaches for discovering rules and attribute dependencies, in: W. Klösgen, J.M. Żytkow (Eds.), Handbook of Data Mining and Knowledge Discovery, Oxford, 2000, pp. 328 -- 339.