zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A kinematically coupled time-splitting scheme for fluid-structure interaction in blood flow. (English) Zbl 1162.74012
Summary: We present a new time-splitting scheme for the numerical simulation of fluid-structure interaction between blood flow and vascular walls. This scheme deals in a successful way with the problem of the added mass effect. The scheme is modular and it embodies the stability properties of implicit schemes at the low computational cost of loosely coupled ones.

MSC:
74F10Fluid-solid interactions
74L15Biomechanical solid mechanics
74S05Finite element methods in solid mechanics
76Z05Physiological flows
92C10Biomechanics
WorldCat.org
Full Text: DOI
References:
[1] Causin, P.; Gerbeau, J. F.; Nobile, F.: Added-mass effect in the design of partitioned algorithms for fluid--structure problems, Comput. methods appl. Mech. engrg. 194, 4506-4527 (2005) · Zbl 1101.74027 · doi:10.1016/j.cma.2004.12.005
[2] Farhat, C.; Lesoinne, M.; Tallec, P. L.: Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity, Comput. methods appl. Mech. engrg. 157, 95-114 (1998) · Zbl 0951.74015 · doi:10.1016/S0045-7825(97)00216-8
[3] Farhat, C.; Van Der Zee, G.; Geuzaine, P.: Provably second-order time-accurate loosely coupled solution algorithms for transient nonlinear computational aeroelasticity, Comput. methods appl. Mech. engrg. 195, 1973-2001 (2006) · Zbl 1178.76259 · doi:10.1016/j.cma.2004.11.031
[4] Piperno, S.; Farhat, C.: Partitioned procedures for the transient solution of coupled aeroelastic problems--part II: Energy transfer analysis and three dimensional applications, Comput. methods appl. Mech. engrg. 190, 3147-3170 (2001) · Zbl 1015.74009 · doi:10.1016/S0045-7825(00)00386-8
[5] Quarteroni, A.; Tuveri, M.; Veneziani, A.: Computational vascular fluid dynamics: problems, models and methods, Comput. vis. Sci. 2, 163-197 (2000) · Zbl 1096.76042 · doi:10.1007/s007910050039
[6] Zhao, S. Z.; Xu, X. Y.; Collins, M. W.: The numerical analysis of fluid--solid interactions for blood flow in arterial structures part 2: development of coupled fluid--solid algorithms, Proc. instn. Mech. eng. Part H 212, 241-252 (1998)
[7] Deparis, S.; Fernandez, M. A.; Formaggia, L.: Acceleration of a fixed point algorithm for a fluid--structure interaction using transpiration condition, Math. modelling numer. Anal. 37, No. 4, 601-616 (2003) · Zbl 1118.74315 · doi:10.1051/m2an:2003050 · numdam:M2AN_2003__37_4_601_0
[8] Gerbeau, J. F.; Vidrascu, M.: A quasi-Newton algorithm based on a reduced model for fluid--structure interactions problems in blood flows, Math. model. Numer. anal. 37, No. 4, 631-648 (2003) · Zbl 1070.74047 · doi:10.1051/m2an:2003049 · numdam:M2AN_2003__37_4_631_0
[9] Figueroa, C. A.; Vignon-Clementel, I. E.; Jansen, K. E.; Hughes, T. J. R.; Taylor, C. A.: A coupled momentum method for modeling blood flow in three-dimensional deformable arteries, Comput. methods appl. Mech. engrg. 195, 5685-5706 (2006) · Zbl 1126.76029 · doi:10.1016/j.cma.2005.11.011
[10] Fernández, M. A.; Gerbeau, J. -F.; Grandmont, C.: A projection semi-implicit scheme for the coupling of an elastic structure with an incompressible fluid, Internat. J. Numer. methods engrg. 69, No. 4, 794-821 (2007) · Zbl 1194.74393 · doi:10.1002/nme.1792
[11] Quaini, A.; Quarteroni, A.: A semi-implicit approach for fluid--structure interaction based on an algebraic fractional step method, Math. models methods appl. Sci. 17, No. 6, 957-983 (2007) · Zbl 05176130
[12] Nobile, F.; Vergara, C.: An effective fluid--structure interaction formulation for vascular dynamics by generalized Robin conditions, SIAM J. Sci. comput. 30, No. 2, 731-763 (2008) · Zbl 1168.74038 · doi:10.1137/060678439
[13] E. Burman, M.A. Fernández, Stabilization of explicit coupling in fluid--structure interaction involving fluid incompressibility. Technical Report RR-6445, INRIA, February 2008
[14] Glowinski, R.; Dean, E. J.; Guidoboni, G.; Juarez, L. H.; Pan, T. -W.: Applications of operator-splitting methods to the direct numerical simulation of particulate and free-surface flows and to the numerical solution of the two-dimensional elliptic Monge--Ampère equation, Japan J. Indust. appl. Math. 25, 1-63 (2008) · Zbl 1141.76043 · doi:10.1007/BF03167512
[15] Formaggia, L.; Gerbeau, J. F.; Nobile, F.; Quarteroni, A.: On the coupling of 3D and 1D Navier--Stokes equations for flow problems in compliant vessels, Comput. methods appl. Mech. engrg. 191, No. 6--7, 561-582 (2001) · Zbl 1007.74035 · doi:10.1016/S0045-7825(01)00302-4
[16] Canic, S.; Hartley, C. J.; Rosenstrauch, D.; Tambaca, J.; Guidoboni, G.; Mikelic, A.: Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics and experimental validation, Ann. biomed. Eng. 34, No. 9, 575-592 (2006)
[17] Canic, S.; Tambaca, J.; Guidoboni, G.; Mikelic, A.; Hartley, C. J.; Rosenstrauch, D.: Blood flow in compliant arteries: an effective viscoelastic reduced model, numerics and experimental validation, SIAM J. Appl. math. 67, 164-193 (2006)
[18] Mikelic, A.; Guidoboni, G.; Canic, S.: Fluid--structure interaction in a pre-stressed tube with thick elastic walls i: The stationary Stokes problem, Netw. heterog. Media 2, No. 3, 397-423 (2007) · Zbl 1260.35147
[19] Glowinski, R.: Finite element methods for incompressible viscous flow, Handbook of numerical analysis (2003) · Zbl 1040.76001
[20] Glowinski, R.; Guidoboni, G.; Pan, T. -W.: Wall-driven incompressible viscous flow in a two-dimensional semi-circular cavity, J. comput. Phys. 216, No. 1, 76-91 (2006) · Zbl 1090.76041 · doi:10.1016/j.jcp.2005.11.021
[21] Cavallini, Nicola; Caleffi, Valerio; Coscia, Vincenzo: Finite volumes and WENO scheme in one-dimensional vascular system modelling, Comput. math. Appl. 56, 2382-2397 (2008) · Zbl 1165.76364 · doi:10.1016/j.camwa.2008.05.039