zbMATH — the first resource for mathematics

Homogenization of elastic-viscoplastic heterogeneous materials: Self-consistent and Mori-Tanaka schemes. (English) Zbl 1162.74037
Summary: This paper deals with the prediction of macroscopic behavior of a multiphase elastic-viscoplastic material. The proposed homogenization schemes are based on an interaction law postulated by A. Molinari et al. [Mech. Mater. 26, 43–62 (1997)]. Self-consistent schemes are developed to describe the behavior of disordered aggregates. The Mori-Tanaka approach is used to capture the behavior of composite materials, where one phase can be clearly identified as the matrix. The proposed schemes are developed within a general framework where compressible elasticity and anisotropy of the materials are taken into account. Inclusions can have various shapes and orientations. Illustrations of the homogenization procedure are given for a two-phase composite materials. Comparisons between results in the literature and predictions based on the interaction law are performed and have demonstrated the efficiency of the proposed homogenization schemes.

74Q15 Effective constitutive equations in solid mechanics
74Q05 Homogenization in equilibrium problems of solid mechanics
74C10 Small-strain, rate-dependent theories of plasticity (including theories of viscoplasticity)
74E30 Composite and mixture properties
Full Text: DOI
[1] Abdul-Latif, A.: Pertinence of the grains aggregate type on the self-consistent model responses, Int. J. Solids struct. 41, 305-322 (2004) · Zbl 1060.74523 · doi:10.1016/j.ijsolstr.2003.09.014
[2] Asaro, R.; Needleman, A.: Overview. texture development and strain-hardening in rate dependent polycrystals, Acta metall. 33, 923-953 (1985)
[3] Barai, P.; Weng, G.: Mechanics of creep resistance in nanocrystalline solids, Acta mech. 24, 327-348 (2007) · Zbl 1136.74031 · doi:10.1007/s00707-007-0558-1
[4] Berbenni, S.; Favier, V.; Berveiller, M.: Impact of the grain size distribution on the yield stress of heterogeneous materials, Int. J. Plast. 23, 114-142 (2007) · Zbl 1331.74045
[5] Berveiller, M.; Zaoui, A.: An extension of the self-consistent scheme to plastically flowing polycrystals, J. mech. Phys. solids 26, 325-344 (1979) · Zbl 0395.73033 · doi:10.1016/0022-5096(78)90003-0
[6] Beurthey, S., 1997. Modélisations du comportement mécanique d’alliages de polymères. Ph.D. Thesis, Ecole Polytechnique, Palaiseau, France.
[7] Eshelby, J. D.: The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc. roy. Soc. lond. A 241, 376-396 (1957) · Zbl 0079.39606 · doi:10.1098/rspa.1957.0133
[8] Hashin, Z.: The inelastic inclusion problem, Int. J. Eng. sci. 7, 11-36 (1969) · Zbl 0164.26103 · doi:10.1016/0020-7225(69)90020-2
[9] Hill, R.: Continuum micro-mechanisms of elastoplastic polycrystals, J. mech. Phys. solids 13, 89-101 (1965) · Zbl 0127.15302 · doi:10.1016/0022-5096(65)90023-2
[10] Hutchinson, J. W.: Bounds and self-consistent estimates for creep of polycrystalline materials, Proc. roy. Soc. lond. A 348, 101-127 (1976) · Zbl 0319.73059 · doi:10.1098/rspa.1976.0027
[11] Kouddane, R.; Molinari, A.; Canova, G. R.: Self-consistent modelling of heterogeneous viscoelastic and elastoviscoplastic materials, Large plastic deformation, 129-141 (1993)
[12] Kreher, W.: Residual stresses and stored elastic energy of composites and polycrystals, J. mech. Phys. solids 38, 115-128 (1990) · Zbl 0701.73008 · doi:10.1016/0022-5096(90)90023-W
[13] Kreher, W.; Molinari, A.: Residual stresses in polycrystals as influenced by grain shape and texture, J. mech. Phys. solids 41, 1955-1977 (1993) · Zbl 0792.73069 · doi:10.1016/0022-5096(93)90075-Q
[14] Krőner, E.: Zur plastischen verformung des vielkristalls, Acta metall. 9, 155-161 (1961)
[15] Lebensohn, R.; Tomé, C.: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys, Acta metall. Mater. 41, 2611-2624 (1993)
[16] Li, J.; Weng, G.: Strain-rate sensitivity relaxation behavior and complex moduli of a class of isotropic viscoelastic composites, ASME J. Eng. mater. Technol., 494-504 (1994)
[17] Li, J.; Weng, G.: A secant-viscosity approach to the time-dependent creep of an elastic – viscoplastic composite, J. mech. Phys. solids 45, 1069-1083 (1997) · Zbl 0977.74510 · doi:10.1016/S0022-5096(97)00003-3
[18] Li, J.; Weng, G.: A unified approach from elasticity to viscoelasticity to viscoplasticity of particle-reinforced solids, Int. J. Plast. 14, 193-208 (1998) · Zbl 0915.73035 · doi:10.1016/S0749-6419(97)00048-X
[19] Masson, R.; Zaoui, A.: Self-consistent estimates for the rate-dependent elastoplastic behavior of polycrystalline materials, J. mech. Phys. solids 47, 1543-1568 (1999) · Zbl 0976.74010 · doi:10.1016/S0022-5096(98)00106-9
[20] Mercier, S.; Jacques, N.; Molinari, A.: Validation of an interaction law for the eshelby inclusion problem in elasto-viscoplasticity, Int. J. Solids struct. 42, 1923-1941 (2005) · Zbl 1093.74519 · doi:10.1016/j.ijsolstr.2004.08.016
[21] Mercier, S.; Molinari, A.; Estrin, Y.: Grain size dependence of strength of nanocrystalline materials as exemplified by copper: an elastic – viscoplastic modelling approach, J. mater. Sci. 42, 1455-1465 (2007)
[22] Molinari, A.: Extensions of the self-consistent tangent model, Model. simul. Mater. sci. Eng. 7, 683-697 (1999)
[23] Molinari, A.: Averaging models for heterogeneous viscoplastic and elastic – viscoplastic materials, J. eng. Mater. technol. 124, 62-70 (2002)
[24] Molinari, A.; Ahzi, S.; Kouddane, R.: On the self-consistent modelling of elastic – plastic behavior of polycrystals, Mech. mater. 26, 43-62 (1997)
[25] Molinari, A.; Canova, G. R.; Ahzi, S.: A self consistent approach of the large deformation polycrystal viscoplasticity, Acta metall. 35, 2983-2994 (1987)
[26] Molinari, A.; El-Houdaigui, F.; Tóth, L. S.: Validation of the tangent formulation for the solution of the non-linear eshelby inclusion problem, Int. J. Plast. 20, 291-307 (2004) · Zbl 1145.74328 · doi:10.1016/S0749-6419(03)00038-X
[27] Molinari, A.; Mercier, S.: Homogeneization of viscoplastic materials, Multiscale modeling and characterization of elastic – inelastic behavior of engineering materials (2004)
[28] Ortiz, M.; Molinari, A.: Microstructural thermal stresses in ceramic materials, J. mech. Phys. solids 36, 385-400 (1988) · Zbl 0637.73008 · doi:10.1016/0022-5096(88)90024-5
[29] Paquin, A., 1998. Modélisation micromécanique du comportement élastoviscoplastique des matériaux hétérogènes. Ph.D. Thesis, University of Metz, Metz, France.
[30] Paquin, A.; Sabar, H.; Berveiller, M.: Integral formulation and self-consistent modelling of elasto-viscoplastic behavior of heterogeneous materials, Arch. appl. Mech. 69, 14-35 (1999) · Zbl 0964.74010 · doi:10.1007/s004190050201
[31] Perzyna, P.: Internal state variable description of dynamic fracture of ductile solids, Int. J. Solids struct. 22, 797-818 (1986)
[32] Pierard, O.; Doghri, I.: An enhanced affine formulation and the corresponding numerical algorithms for the mean-field homogenization of elasto-viscoplastic composites, Int. J. Plast. 22, 131-157 (2006) · Zbl 1089.74043 · doi:10.1016/j.ijplas.2005.04.001
[33] Pierard, O.; Llorca, J.; Segurado, J.; Doghri, I.: Micromechanics of particle-reinforced elasto-viscoplastic composites: finite element simulations versus affine homogenization, Int. J. Plast. 23, 1041-1060 (2007) · Zbl 1119.74014 · doi:10.1016/j.ijplas.2006.09.003
[34] Ponte-Castañeda, P.: Second-order homogenization estimates for nonlinear composites incorporating field fluctuations: I-theory, J. mech. Phys. solids 50, 737-757 (2002) · Zbl 1116.74412 · doi:10.1016/S0022-5096(01)00099-0
[35] Ponte-Castañeda, P.; Suquet, P.: Non linear composites, Adv. appl. Mech. 34, 171-302 (1998) · Zbl 0889.73049
[36] Rougier, Y.; Stoltz, C.; Zaoui, A.: Self-consistent modelling of elastic – viscoplastic polycrystals, C. R. Acad. sci. Paris, série II 318, 145-151 (1994) · Zbl 0787.73031
[37] Sabar, H.; Berveiller, M.; Favier, V.; Berbenni, S.: A new class of micro – macro models for elastic – viscoplastic heterogeneous materials, Int. J. Solids struct. 39, 3257-3276 (2002) · Zbl 1049.74751 · doi:10.1016/S0020-7683(02)00256-1
[38] Schapery, R., 1962. Approximate methods of transform inversion in viscoelastic stress analysis. In: Proceedings of 4th US National Congress on Applied Mechanics, vol. 2, pp. 1075 – 1085.
[39] Suquet, P.: Elements of homogeneization for inelastic solid mechanics, Homogeneization techniques for composite media, 193-278 (1985) · Zbl 0645.73012
[40] Tòth, L.; Molinari, A.; Zouhal, N.: Cyclic plasticity phenomena as predicted by polycrystal plasticity, Mech. mater. 32, 99-113 (2000)
[41] Turner, P. A.; Tomé, C. N.; Woo, C. H.: Self-consistent modelling visco-elastic polycrystals: an approximate scheme, Philos. mag. A 70, 689-711 (1994)
[42] Weng, G.: A self-consistent relation for the time-dependent creep of polycrystals, Int. J. Plast. 9, 181-198 (1993) · Zbl 0783.73025 · doi:10.1016/0749-6419(93)90028-O
[43] Zouhal, N.; Molinari, A.; Toth, L.: Elastic – plastic effects as predicted by the Taylor – lin model of polycrystal elasto-viscoplasticity, Int. J. Plast. 12, 343-360 (1996) · Zbl 0861.73027 · doi:10.1016/S0749-6419(96)00011-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.