×

The geometry of Schrödinger symmetry in non-relativistic CFT. (English) Zbl 1162.81034

Summary: The non-relativistic conformal “Schrödinger” symmetry of some gravity backgrounds proposed recently in the AdS/CFT context, is explained in the “Bargmann framework”. The formalism incorporates the Equivalence Principle. Newton-Hooke conformal symmetries, which are analogs of those of Schrödinger in the presence of a negative cosmological constant, are discussed in a similar way. Further examples include topologically massive gravity with negative cosmological constant and the Madelung hydrodynamical description.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E15 Kaluza-Klein and other higher-dimensional theories
81V17 Gravitational interaction in quantum theory
83C05 Einstein’s equations (general structure, canonical formalism, Cauchy problems)
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)
PDF BibTeX XML Cite
Full Text: DOI arXiv Link

References:

[2] Jackiw, R., Phys. today, 25, 23, (1972)
[3] Niederer, U.; Hagen, C.R., Helv. phys. acta, Phys. rev. D, 5, 377, (1972)
[4] Non-relativistic structures were earlier identified in C. Duval, Doctoral Thesis, Marseille, 1982.
[5] Duval, C.; Gibbons, G.W.; Horvathy, P.A., Phys. rev. D, 43, 3907, (1991)
[6] de Alfaro, V.; Fubini, S.; Furlan, G., Nuovo cim. A, 34, 569, (1976)
[7] Jackiw, R., Ann. phys., 129, 183, (1980)
[8] Horvathy, P.A., Lett. math. phys., 7, 353, (1983)
[9] Jackiw, R., Ann. phys., 201, 83, (1990)
[10] Jackiw, R.; Pi, S.-Y., Phys. rev. D, 42, 3500, (1990)
[11] Duval, C.; Horvathy, P.; Palla, L.; Duval, C.; Horvathy, P.; Palla, L., Phys. lett. B, Ann. phys., 249, 265, (1996)
[12] Hassaïne, M.; Horvathy, P.; Hassaïne, M.; Horvathy, P., Ann. phys. (N.Y.), Phys. lett. A, 279, 215, (2001)
[13] O’Raifeartaigh, L.; Sreedhar, V.V., Ann. phys., 293, 215, (2001)
[14] Henkel, M.; Unterberger, J., Nucl. phys. B, 660, 407, (2003)
[15] Balasubramanian, K.; McGreevy, J., Phys. rev. lett., 101, 061601, (2008)
[16] Son, D.T., Phys. rev. D, 78, 046003, (2008)
[17] Leiva, C.; Plyushchay, M.S., Ann. phys. (N.Y.), 307, 372, (2003)
[18] W.D. Goldberger, hep-th/0806.2867.; J.L.B. Barbon, C.A. Fuertes, hep-th/0806.3244.; C.P. Herzog, M. Rangamani, S.F. Ross, hep-th/0807.1099.; J. Maldacena, D. Martelli, Y. Tachikawa, hep-th/0807.1100.; A. Adams, K. Balasubramanian, J. McGreevy, hep-th/0807.1111.; A.V. Galajinsky, hep-th/0808.1553.; F.L. Lin, S.Y. Wu, hep-th/0810.0227.; S. Sachdev, M. Mueller, cond-mat.str-el/0810.3005.; M. Schvellinger, hep-th/0810.3011.; L. Mazzucato, Y. Oz, S. Theisen, hep-th/0810.3673.; R.C. Myers, M.C. Wapler, hep-th/0811.0480.; M. Rangamani, S.F. Ross, D.T. Son, E.G. Thompson, hep-th/0811.2049.; A. Akhavan, M. Alishahiha, A. Davody, A. Vahedi, hep-th/0811.3067.
[19] Siklos, S.T.C., ()
[20] Banados, M.; Chamblin, A.; Gibbons, G.W., Phys. rev. D, 61, 081901(R), (2000)
[21] Ayon-Beato, E.; Hassaïne, M., Phys. rev. D, 75, 064025, (2007)
[22] Brinkmann, H.W., Math. ann., 94, 119, (1925)
[23] Einstein, A., Über die spezielle und die allgemeine relativitätstheorie, (1921), Vieweg Braunschweig · JFM 46.1279.01
[24] Sagnac, G.; Hasselbach, F.; Nicklaus, M., C.r.a.s., C.r.a.s., J. phys. (Paris), Phys. rev. A, 48, 143, (1993), See, e.g.
[25] Zimmerman, J.E.; Mercereau, J.E., Phys. rev. lett., 14, 887, (1965)
[26] F. London, Superfluids, vol. I, Wiley/Chapman & Hall, London, 1950. · Zbl 0041.58507
[27] Hildebrandt, A.F.; Brickman, N.F., Phys. rev. lett., Phys. rev., 184, 460, (1969)
[28] Avenel, O.; Hakonen, P.; Varoquaux, E., Phys. rev. lett., 78, 3602, (1997)
[29] Duval, C.; Horváthy, P.A.; Palla, L., Phys. rev. D, 50, 6658, (1994)
[30] Gibbons, G.W.; Patricot, C.E., Class. quant. grav., 20, 5225, (2003)
[31] Niederer, U., Helv. phys. acta, 46, 191, (1973)
[32] Burdet, G.; Duval, C.; Perrin, M., Lett. math. phys., 10, 255, (1985)
[33] Jackiw, R.; Pi, S.Y., Phys. rev. D, 44, 2524, (1991)
[34] Deser, S.; Jackiw, R.; Templeton, S., Ann. phys., Phys. rev. lett., 48, 975, (1982), [Erratum-ibid. 185, 406.1988 APNYA,281,409 (1988 APNYA,281,409-449.2000)]
[35] Banados, M.; Teitelboim, C.; Zanelli, J., Phys. rev. lett., 69, 1849, (1992)
[36] Li, W.; Song, W.; Strominger, A., Jhep, 0804, 082, (2008)
[37] Deser, S.; Kay, J.H.; Deser, S., (), 120, 97, (1983)
[38] G.W. Gibbons, C.N. Pope, E. Sezgin, hep-th/0807.2613.
[39] Ayon-Beato, E.; Hassaïne, M., Ann. phys., 317, 175, (2005)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.