zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Linear programming models for the user and system optimal dynamic network design problem: Formulations, comparisons and extensions. (English) Zbl 1162.90515
Summary: In this paper we formulate a network design model in which the traffic flows satisfy dynamic user equilibrium conditions for a single destination. The model presented here incorporates the Cell Transmission Model (CTM); a traffic flow model capable of capturing shockwaves and link spillovers. Comparisons are made between the properties of the Dynamic User equilibrium Network Design Problem (DUE NDP) and an existing Dynamic System Optimal (DSO) NDP formulation. Both network design models have different objective functions with similar constraint sets which are linear and convex. Numerical demonstrations are made on multiple networks to demonstrate the efficacy of the model and demonstrate important differences between the DUE and DSO NDP approaches. In addition, the flexibility of the approach is demonstrated by extending the formulation to account for demand uncertainty. This is formulated as a stochastic programming problem and initial test results are demonstrated on test networks. It is observed that not accounting for demand uncertainty explicitly, provides sub-optimal solution to the DUE NDP problem.

90C05Linear programming
90B18Communication networks (optimization)
90B20Traffic problems
90C15Stochastic programming
Full Text: DOI
[1] Abdulaal M, LeBlanc LJ (1979) Continuous equilibrium network design models. Transp Res 13B:19--32 · Zbl 0398.90042 · doi:10.1016/0191-2615(79)90004-3
[2] Birge JR, Ho JK (1993) Optimal flows in stochastic dynamic networks with congestion. Oper Res 41:203--216 · Zbl 0771.90044 · doi:10.1287/opre.41.1.203
[3] Birge JR, Louveaux K (1997) Introduction to stochastic programming. Springer, Berlin Heidelberg New York · Zbl 0892.90142
[4] Daganzo CF (1994) The cell transmission model: a simple dynamic representation of highway traffic consistent with the hydrodynamic theory. Transp Res 28B(4):269--287 · doi:10.1016/0191-2615(94)90002-7
[5] Daganzo CF (1995) The cell transmission model, part II: network traffic. Transp Res 29B(2):79--93 · doi:10.1016/0191-2615(94)00022-R
[6] Davis GA (1994) Exact local solution of the continuous network design problem via stochastic user equilibrium assignment. Transp Res 28B:61--75 · doi:10.1016/0191-2615(94)90031-0
[7] Friesz T, Cho H, Mehta N, Tobin R, Anandalingam G (1992) A simulated annealing approach to the network design problem with variational inequality constraints. Transp Sci 26:18--25 · Zbl 0764.90084 · doi:10.1287/trsc.26.1.18
[8] Golani H, Waller ST (2004) A combinatorial approach for multi-destination dynamic traffic assignment. Transp Res Rec no. 1882 and Journal of the Transportation Research Board 70--78
[9] Heydecker B (2002) Dynamic equilibrium network design. In: Taylor MP (ed) Proc. 15th ISTTT conference. Pergamon, Adelaide, pp 349--369
[10] Higle JL, Sen S (1999) An introductory tutorial on stochastic linear programming models. Interfaces 29:33--61 · doi:10.1287/inte.29.2.33
[11] Janson BN (1995) Network design effects of dynamic traffic assignment. J Transp Eng 121(1):1--13 · doi:10.1061/(ASCE)0733-947X(1995)121:1(1)
[12] Jeon K, Ukkusuri SV, Waller ST (2006) Selectorecombinative genetic algorithm to relax computational complexity of discrete network design problem. Journal of the Transportation Research Board, no. 1964. Transportation Research Board of the National Academies, Washington, D.C., pp 91--103
[13] Karoonsoontawong A, Waller ST (2006) A comparison of system- and user-optimal stochastic dynamic network design models using Monte Carlo bounding techniques. Journal of Transportation Research Board 91--102
[14] LeBlanc LJ, Boyce D (1986) A bi-level programming algorithm for the exact solution of the network design problem with user-optimal traffic flows. Transp Res 20B:259--265 · doi:10.1016/0191-2615(86)90021-4
[15] Li Y, Waller ST, Ziliaskopoulos AK (2003) A decomposition method for system-optimal dynamic traffic assignment. Networks and Spatial Economics 3(4):441--456 · doi:10.1023/A:1027310021084
[16] Magnanti TL, Wong RT (1984) Network design and transportation planning: models and algorithms. Transp Sci 18:1--55 · doi:10.1287/trsc.18.1.1
[17] Mahmassani HS (1984) Uncertainty in transportation system evaluation: issues and approaches. Transp Plan Technol 9(1):1--12 · doi:10.1080/03081068408717264
[18] Mahmassani HS, Peeta S, Hu TY, Ziliaskopoulos AK (1993) Dynamic traffic assignment with multiple user classes for real-time ATIS/ATMS applications. Proc. advanced traffic management conference. FHWA, US DOT, Washington DC, pp 91--114
[19] Marcotte P (1983) Network optimization with continuous control parameters. Transp Sci 17:181--197 · doi:10.1287/trsc.17.2.181
[20] Mouskos K (1992) A taboo-search based approach for network design. Ph.D. Dissertation, The University of Texas at Austin, Austin, TX
[21] Nguyen S, Dupis C (1984) An efficient method for computing traffic equilibria in networks with asymmetric transportation costs. Transp Sci 18:185--202 · doi:10.1287/trsc.18.2.185
[22] Peeta S, Ziliaskopoulos A (2001) Foundations of dynamic traffic assignment: the past, the present and the future. Networks and Spatial Economics 1(3/4):233--266 · doi:10.1023/A:1012827724856
[23] Suwansirikul C, Friesz TL, Tobin RL (1987) Equilibrium decomposed optimization: a heuristic for the continuous equilibrium network design problem. Transp Sci 21:254--263 · Zbl 0638.90097 · doi:10.1287/trsc.21.4.254
[24] Tzeng GH, Tsaur (1997) Application of multiple criteria decision making for network improvement plan model. J Adv Transp 31:48--74 · doi:10.1002/atr.5670310106
[25] Ukkusuri S (2002) Linear programs for user optimal dynamic traffic assignment problem. Master’s thesis, University of Illinois at Urbana Champaign
[26] Waller ST, Ziliaskopoulos AK (2001) A dynamic and stochastic approach to network design. Journal of the Transportation Research Board, no. 1771, 106--114
[27] Waller ST, Ziliaskopoulos A (2006) A combinatorial user optimal dynamic traffic assignment algorithm. Ann Oper Res ISSN: 0254--5330, 1572--9338 · Zbl 1156.90324
[28] Yang H, Bell MGH (1998) Models and algorithms for road network design: a review and some new developments. Transp Rev 18:257--278 · doi:10.1080/01441649808717016
[29] Ziliaskopoulos AK (2000) A linear programming model for the single destination system optimum dynamic traffic assignment problem. Transp Sci 34(1):37--49 · Zbl 1002.90013 · doi:10.1287/trsc.