zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
GEM: A novel evolutionary optimization method with improved neighborhood search. (English) Zbl 1162.90525
Summary: A new optimization technique called Grenade Explosion Method (GEM) is introduced and its underlying ideas, including the concept of Optimal Search Direction (OSD), are elaborated. The applicability and efficiency of the technique is demonstrated using standard benchmark functions. Comparison of the results with those of other, widely-used, evolutionary algorithms shows that the proposed algorithm outperforms its rivals both in the success rate and rate of convergence. The method is also shown to be capable of finding most, or even all, optima of functions having multiple global optima. Moreover, it is shown that the performance of GEM is invariant against shifting and scaling of the search space and objective function.

90C15Stochastic programming
65K05Mathematical programming (numerical methods)
ABC; nwSpGr
Full Text: DOI
[1] Ombach, J.: Stability of evolutionary algorithms, J. math. Anal. 342, 326-333 (2008) · Zbl 1146.90071 · doi:10.1016/j.jmaa.2007.12.006
[2] I.J. Dotu, J. Garcia, A. Berlanga, J.M. Molina, A meta-level evolutionary strategy for many-criteria design: application to improving tracking filters, Adv. Eng. Inf., doi:10.1016/j.aei.2008.08.001.
[3] Aryanezhad, M. B.; Hemati, M.: A new genetic algorithm for solving nonconvex nonlinear programming problems, Appl. math. Comput. 199, 186-194 (2008) · Zbl 1142.65047 · doi:10.1016/j.amc.2007.09.047
[4] Wu, Z.; Ding, G.; Wang, K.; Fukaya, M.: Application of a genetic algorithm to optimize the refrigerant circuit of fin-and-tube heat exchangers for maximum heat transfer or shortest tube, Int. J. Therm. sci. 47, 985-997 (2008)
[5] Goncalves, J. F.; Mendes, J. J. M.; Resende, M. G. C.: A genetic algorithm for the resource constrained multi-project scheduling problem, Eur. J. Oper. res. 189, 1171-1190 (2008) · Zbl 1146.90412 · doi:10.1016/j.ejor.2006.06.074
[6] Wu, T. H.; Chang, C. C.; Chung, A. H.: A simulated annealing algorithm for manufacturing cell formation problems, Expert syst. Appl. 34, 1609-1617 (2008)
[7] Suresh, S.; Sujit, P. B.; Rao, A. K.: Particle swarm optimization approach for multi-objective composite-beam design, Compos. struct. 81, 598-605 (2007)
[8] Trelea, I. C.: The particle swarm optimization algorithm: convergence analysis and parameter selection, Inf. process. Lett. 85, 317-325 (2003) · Zbl 1156.90463 · doi:10.1016/S0020-0190(02)00447-7
[9] Liao, W. H.; Kao, Y.; Fan, C. M.: Data aggregation in wireless sensor networks using ant colony algorithm, J. network comput. Appl. 31, 387-401 (2008)
[10] Hashemi, S. M.; Moradi, A.; Rezapour, M.: An ACO algorithm to design UMTS access network using divided and conquer techniques, Eng. appl. Artif. intell. 21, 931-940 (2008)
[11] Karaboga, D.; Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm, J. global optim. 39, 459-471 (2007) · Zbl 1149.90186 · doi:10.1007/s10898-007-9149-x
[12] D.T. Pham, A. Ghanbarzade, E. Koc, S. Otri, S. Rahim, M. Zaidi, The bees algorithm -- a novel tool for complex optimization problems, in: IPROMS 2006, Cardiff-England, pp. 454 -- 461.
[13] Karaboga, D.; Basturk, B.: On the performance of artificial bee colony (ABC) algorithm, Appl. soft comput. 8, 687-697 (2008)
[14] Salhi, S.; Queen, N. M.: A hybrid algorithm for identifying global and local minima when optimizing functions with many local minima, Eur. J. Oper. res. 155, 51-67 (2004) · Zbl 1053.90058 · doi:10.1016/S0377-2217(02)00871-8
[15] Rodriguez-Tello, E.; Hao, J. K.; Torres-Jimenez, J.: An improved simulated annealing algorithm for bandwidth minimization, Eur. J. Oper. res. 185, 1319-1335 (2008) · Zbl 1146.90518 · doi:10.1016/j.ejor.2005.12.052
[16] Stutzle, T.: Iterated local search for the quadratic assignment problem, Eur. J. Oper. res. 174, 1519-1539 (2006) · Zbl 1103.90066 · doi:10.1016/j.ejor.2005.01.066
[17] Devroye, L.: Non-uniform random variate generation, (1986) · Zbl 0593.65005
[18] K.Y. Chan, C.K. Kwong, X.G. Juo, Improved orthogonal array based simulated annealing for design optimization, Exp. Syst. Appl., doi:10.1016/j.eswa.2008.09.022.
[19] Tsoulos, I. G.: Modification of real code genetic algorithm for global optimization, Appl. math. Comput. 203, 598-607 (2008) · Zbl 1157.65391 · doi:10.1016/j.amc.2008.05.005
[20] Bellman, R.: Adaptive control processes: A guided random tour, (1961) · Zbl 0103.12901
[21] Mulero-Martinez, J. I.: Functions bandlimited in frequency are free of the curse of dimensionality, Neurocomputing 70, 1439-1452 (2007)
[22] Heiss, F.; Winschel, V.: Likelihood approximation by numerical integration on sparse grids, J. econom. 144, 62-80 (2008)