Simsek, Yilmaz; Kurt, Veli; Kim, Daeyeoul New approach to the complete sum of products of the twisted \((h,q)\)-Bernoulli numbers and polynomials. (English) Zbl 1163.11015 J. Nonlinear Math. Phys. 14, No. 1-4, 44-56 (2007). In this paper the higher-order twisted \((h,q)\)-Bernoulli polynomials and numbers are defined, and a new approach to the complete sums of products of twisted \((h,q)\)-Bernoulli polynomials and numbers is used. The \(p\)-adic \(q\)-Volkenborn integral is used to evaluate summations of the form: \[ B^{(h,v)}_{m,w}(y_1+y_2+ \cdots +y_v,q)=\sum_{l_1, l_2, \cdots, l_v \geq 0 ; l_1+l_2+ \cdots + l_v = m }{m \choose l_1,l_2, \cdots, l_v} \prod^v_{j=1}B^{(h)}_{l_j,w}(y_j,q), \] where \(B^{(h)}_{m,w}(y_j,q)\) is the twisted \((h,q)\)-Bernoulli polynomials. Several new identities involving \((h,q)\)-Bernoulli polynomials and numbers are also obtained. Reviewer: Ping Sun (Shenyang) Cited in 29 Documents MSC: 11B68 Bernoulli and Euler numbers and polynomials 11S80 Other analytic theory (analogues of beta and gamma functions, \(p\)-adic integration, etc.) Keywords:twisted \((h,q)\)-Bernoulli numbers; twisted \((h,q)\)-Bernoulli polynomials; \(q\)-Volkenborn integral PDF BibTeX XML Cite \textit{Y. Simsek} et al., J. Nonlinear Math. Phys. 14, No. 1--4, 44--56 (2007; Zbl 1163.11015) Full Text: DOI OpenURL References: [1] Albeverio S, Russ. J. Math. Phys. 8 pp 135– (2001) [2] Comtet L, Reidel Publishing Company, Dordrecht-Holland (1974) [3] Cenkci M, Adv. Stud. Contep. Math. 9 pp 203– (2004) [4] Graham R L, Concrete Mathematics (1988) [5] Huang I-C, J. Number Theory 76 pp 178– (1999) · Zbl 0940.11009 [6] Kim T, Rep. Fac. Sci. Engrg. Saga Univ. Math. 22 pp 21– (1994) [7] Kim T, J. Number Theory 76 pp 320– (1999) · Zbl 0941.11048 [8] Kim T, Arch. Math. 76 pp 190– (2001) · Zbl 0986.11010 [9] Kim T, Integral Transform. Spec. Funct. 13 pp 65– (2002) · Zbl 1016.11008 [10] Kim T, Russ. J. Math. Phys. 19 pp 288– (2002) [11] Kim T, Russ. J. Math. Phys. 10 pp 91– (2003) [12] Kim T, Integral Transform. Spec. Funct. 15 pp 415– (2004) · Zbl 1135.11340 [13] Kim T, Adv. Stud. Contep. Math. 11 pp 157– (2005) [14] Kim T, Adv. Stud. Contep. Math. 2 pp 9– (2000) [15] Kim T, Far East J. Appl. Math. 13 pp 13– (2003) [16] Koblltz N, J. Number Theory 14 pp 332– (1982) · Zbl 0501.12020 [17] Kobhtz N, London Math. Soc. Lecture Note Ser. 46 (1980) [18] Robert A M, A course in p-adic Analysis (2000) [19] Simsek Y, J. Korean Math. Soc. 40 pp 963– (2003) · Zbl 1043.11066 [20] Simsek Y, Bull. Korean Math. Soc. 41 pp 299– (2004) · Zbl 1143.11305 [21] Simsek Y, Adv. Stud. Contep. Math. 11 pp 205– (2005) [22] Simsek Y, J. Number Theory 110 pp 267– (2005) · Zbl 1114.11019 [23] Simsek Y, J. Math. Anal. Appl. 318 pp 333– (2006) · Zbl 1149.11054 [24] Simsek Y, J. Math. Anal. Appl. 324 pp 790– (2006) · Zbl 1139.11051 [25] Simsek Y Twisted p-adic (h, q)-L-functions, submitted [26] Srivastava H M, Russ. J. Math. Phys. 12 pp 241– (2005) [27] Viladimirov V S, p-adic Analysis and Mathematical Physics (1990) This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.