Diaz, Guy Products and quotients of linear forms of logarithms of algebraic numbers: conjectures and partial results. (Produits et quotients de combinaisons linéaires de logarithmes de nombres algébriques: conjectures et résultats partiels.) (French. English summary) Zbl 1163.11055 J. Théor. Nombres Bordx. 19, No. 2, 373-391 (2007). The strong four exponentials Conjecture deals with the \(\bar\mathbb Q\)-vector space \(\widetilde{\mathcal L}\) spanned by \(1\) and by all the logarithms of the non-zero algebraic numbers: it states that if \(x_1\), \(x_2\) are \(\bar\mathbb Q\)-linearly independent complex numbers and if \(y_1\), \(y_2\) are \(\bar\mathbb Q\)-linearly independent complex numbers, then one at least of the four numbers \(x_1y_1\), \(x_1y_2\), \(x_2y_1\), \(x_2y_2\) does not belong to \(\widetilde{\mathcal L}\).The author proposes a number of conjectures which are either equivalent or else consequences of the four exponentials Conjecture. He also produces new consequences of the strong six exponentials Theorem of D. Roy [ J. Number Theory 41, No. 1, 22–47 (1992; Zbl 0763.11030)] which yield special cases of the above-mentioned conjecture. A typical example is as follows: the strong four exponentials Conjecture holds under the extra assumption that the three numbers \(y_1\), \(y_2\), \(1/x_1\) are \(\bar\mathbb Q\)-linearly independent and \(x_2/x_1\in\widetilde{\mathcal L}\).Related works by the author are [ J. Théor. Nombres Bordx. 9, No. 1, 229–245 (1997; Zbl 0887.11030) and J. Théor. Nombres Bordx. 16, No. 3, 535–553 (2004; Zbl 1071.11046)]. See also [M. Waldschmidt, Diophantine approximation on linear algebraic groups. Transcendence properties of the exponential function in several variables. Grundlehren der Mathematischen Wissenschaften. 326. Berlin: Springer (2000; Zbl 0944.11024)]. Reviewer: Michel Waldschmidt (Paris) MSC: 11J81 Transcendence (general theory) 11J86 Linear forms in logarithms; Baker’s method Keywords:four exponentials conjecture; transcendence; linear forms in logarithms; Schanuel’s Conjecture Citations:Zbl 0763.11030; Zbl 0887.11030; Zbl 1071.11046; Zbl 0944.11024 × Cite Format Result Cite Review PDF Full Text: DOI EuDML References: [1] G. Diaz, La conjecture des quatre exponentielles et les conjectures de D. Bertrand sur la fonction modulaire. J. Théorie des Nombres de Bordeaux 9 (1997), 229-245. · Zbl 0887.11030 [2] G. Diaz, Utilisation de la conjugaison complexe dans l’étude de la transcendance de valeurs de la fonction exponentielle usuelle. J. Théorie des Nombres de Bordeaux 16 (2004), 535-553. · Zbl 1071.11046 [3] D. Roy, Matrices whose coefficients are linear forms in logarithms. J. Number Theory 41 (1992), 22-47. · Zbl 0763.11030 [4] M. Waldschmidt, Diophantine approximation on linear algebraic groups. Grundlerhen der Mathematischen Wissenschaften 326, Springer-Verlag, 2000. · Zbl 0944.11024 [5] M. Waldschmidt, Variations on the six exponentials theorem. Algebra and Number Theory, Proceedings of the Silver Jubilee Conference University of Hyderabad, ed R.Tandon, Hindustant Book Agency, 2005, 338-355. · Zbl 1176.11033 [6] M. Waldschmidt, Further variations on the six exponentials theorem. Hardy-Ramanujan J. 28 (2005), 1-9. · Zbl 1116.11054 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.