Logarithmic approach of the étale wild kernels of number fields. (Approche logarithmique des noyaux étales sauvages des corps de nombres.) (French) Zbl 1163.11075

For a number field \(F\) and a prime number \(\ell,\) the \(\ell\)-étale wild kernels \(W K_{2i}^{\text{ét}} (F)\) are defined as localization kernels \[ \text{Ker}\, (H^2_{\text{ét}} ({\mathcal O}_F[1/\ell], {\mathbb Z}_\ell (i)+1)) \to \displaystyle\bigoplus_{v| p}\;H^2_{\text{ét}}(F_v, {\mathbb Z}_\ell (i+1)). \] The name comes from Tate’s result (a particular case of the Quillen-Lichtenbaum conjecture) which states that \(WK_2^{\text{ét}} (F)\) is isomorphic to the \(\ell\)-part of the usual wild kernel for \(K_2.\) If the prime \(\ell\) is such that \(\text{Gal}(F(\mu_{\ell^\infty})/F)\) is pro-cyclic, the \(WK_{2i}^{\text{ét}} (F)'s\) are canonically isomorphic to the co-invariants of the Tate twists \(X(i)\) of a standard Iwasawa module \(X\) [P. Schneider, Math. Z. 168, 181–205 (1979; Zbl 0421.12024)].
In this paper, the authors single out the zero twist \(WK_0 (F),\) which is isomorphic by class field theory to the so-called group of “logarithmic classes” defined and studied by Jaulent and his students. Provided \(F\) contains a primitive \(\ell^n\)-th root of unity, the étale wild kernels mod \(\ell^n\) are obviously all isomorphic up to adequate twists, and the “logarithmic approach” announced in the title consists in deriving a certain number of properties of these kernels mod \(\ell^n,\) building on results obtained previously for the logarithmic classes. This is presented as a unifying approach (in favor of the log classes), but actually, one can only compare the kernels mod \(\ell^n,\) not the whole kernels themselves (which would contradict known results on the special values of \(L\)-functions). Hence the applications are mainly limited to, say, vanishing theorems, but whose “log” proofs are often essentially the same as the direct cohomological proofs (compare thm. 4 and the subsequent “Spiegelung” corollaries with [e.g. M. Kolster, Seminar on number theory, Paris, France, 1991–92. Boston, MA: Birkhäuser. Prog. Math. 116, 37–62 (1994; Zbl 1043.19500)]. Sometimes certain statements look different because they are expressed in class-field theoretic terms, but they are not stronger than the direct cohomological results (cf. e.g. [M. Kolster and A. Movahhedi, Ann. Sci. Inst. Fourier 50, 35–65 (2000; Zbl 0951.11029)]). When looking for a “unifying heuristic”, one could equally choose any fixed étale kernel, e.g. the \(\ell\)-part of the classical wild kernel for \(K_2,\) since they are all isomorphic mod \(\ell^n.\) Therefore the only argument in favor of the “log” classes would be their algorithmic applications, but here the reviewer is not competent.


11R23 Iwasawa theory
19D50 Computations of higher \(K\)-theory of rings
11R70 \(K\)-theory of global fields
19F27 Étale cohomology, higher regulators, zeta and \(L\)-functions (\(K\)-theoretic aspects)
11R65 Class groups and Picard groups of orders
Full Text: DOI


[1] Banaszak, G., Algebraic \(K\)-theory of number fields and ring of integers and the Stickelberger ideal, Ann. of Math., 135, 325-360 (1992) · Zbl 0756.11037
[2] Banaszak, G., Generalization of the Moore sequence and the wild kernel for higher \(K\)-groups, Compos. Math., 86, 281-305 (1993) · Zbl 0778.11066
[3] Banaszak, G., Euler systems for higher \(K\)-theory of number fields, J. Number Theory, 56, 213-252 (1996) · Zbl 0851.19003
[4] Borel, A., Stable real cohomology of arithmetic groups, Ann. Sci. École Norm. Sup., 7, 613-636 (1977)
[5] Dwyer, W.; Friedlander, E., Algebraic and étale \(K\)-theory, Trans. Amer. Math. Soc., 292, 247-280 (1985) · Zbl 0581.14012
[6] Diaz y. Diaz, F.; Soriano, F., Approche algorithmique du groupe des classes logarithmiques, J. Number Theory, 76, 1-15 (1999) · Zbl 0930.11079
[7] Diaz y. Diaz, F.; Jaulent, J.-F.; Pauli, S.; Pohst, M.; Soriano-Gafiuk, F., A new algorithm for the computation of logarithmic \(ℓ\)-class groups of number fields, Experiment. Math., 14, 67-76 (2005)
[8] Federer, L. J.; Gross, B. H., Regulators and Iwasawa modules (with an appendix by Warren Sinnott), Invent. Math., 62, 3, 443-457 (1981) · Zbl 0468.12005
[9] Gras, G.; Jaulent, J.-F., Sur les corps de nombres réguliers, Math. Z., 202, 343-365 (1989) · Zbl 0704.11040
[10] Gras, G., Théorèmes de réflexion, J. Théor. Nombres Bordeaux, 10, 399-499 (1998) · Zbl 0949.11058
[11] Hutchinson, K., The 2-Sylow subgroup of the wild kernel of exceptional number fields, J. Number Theory, 87, 222-238 (2001) · Zbl 1012.11102
[12] Hutchinson, K., On tame and wild kernels of special number fields, J. Number Theory, 107, 368-391 (2004) · Zbl 1082.11076
[14] Hutchinson, K.; Ryan, D., Hilbert symbols as map of functors, Acta Arith., 114, 349-368 (2004) · Zbl 1067.19003
[15] Iwasawa, K., On \(Z_\ell \)-extensions of algebraic number fields, Ann. of Math., 98, 246-326 (1973) · Zbl 0285.12008
[16] Jaulent, J.-F., Sur l’indépendance \(ℓ\)-adique de nombres algébriques, J. Number Theory, 20, 2, 149-158 (1985) · Zbl 0571.12007
[17] Jaulent, J.-F., L’arithmétique des \(ℓ\)-extensions, Publ. Math. Fac. Sci. Besançon Théor. Nombres 1985/86 (1986), vii+348 pp · Zbl 0601.12002
[18] Jaulent, J.-F., La Théorie de Kummer et le \(K_2\) des corps de nombres, J. Théor. Nombres Bordeaux, 2, 377-411 (1990) · Zbl 0723.11051
[19] Jaulent, J.-F., Noyau universel et valeurs absolues, Astérique, 198-199-200, 187-208 (1991) · Zbl 0756.11033
[20] Jaulent, J.-F., Sur le noyau sauvage des corps de nombres, Acta Arith., 67, 335-348 (1994) · Zbl 0835.11042
[21] Jaulent, J.-F., Classes logarithmiques des corps de nombres, J. Théor. Nombres Bordeaux, 6, 301-325 (1995) · Zbl 0827.11064
[22] Jaulent, J.-F., Théorie \(ℓ\)-adique globale du corps de classes, J. Théor. Nombres Bordeaux, 10, 355-397 (1998) · Zbl 0938.11052
[23] Jaulent, J.-F.; Grandet, M., Sur la capitulation dans les \(Z_\ell \)-extensions, J. Reine Angew. Math., 362, 213-217 (1985) · Zbl 0564.12011
[24] Jaulent, J.-F.; Maire, Ch., Sur les invariants d’Iwasawa des tours cyclotomiques, Canad. Math. Bull., 46, 178-190 (2003) · Zbl 1155.11353
[25] Jaulent, J.-F.; Michel, A., Classes des corps surcirculaires et des corps de fonctions, (Séminaire de Théorie des Nombres. Séminaire de Théorie des Nombres, Paris 1989/1990. Séminaire de Théorie des Nombres. Séminaire de Théorie des Nombres, Paris 1989/1990, Progr. Math., vol. 102 (1992), Birkhäuser Boston: Birkhäuser Boston Boston), 141-162 · Zbl 0751.11052
[26] Jaulent, J.-F.; Soriano, F., Sur les tours localement cyclotomiques, Arch. Math. (Basel), 73, 132-140 (1999) · Zbl 0945.11021
[27] Jaulent, J.-F.; Soriano, F., Sur le noyau sauvage des corps de nombres et le groupe des classes logarithmiques, Math. Z., 238, 335-354 (2001) · Zbl 1009.11062
[28] Jaulent, J.-F.; Soriano, F., 2-groupe des classes positives d’un corps de nombres et noyau sauvage de la \(K\)-théorie, J. Number Theory, 108, 187-208 (2004) · Zbl 1075.11076
[30] Kahn, B., Descente galoisienne et \(K_2\) des corps de nombres, \(K\)-Theory, 7, 55-100 (1993) · Zbl 0780.12007
[31] Kolster, M., Remarks on étale \(K\)-theory and Leopoldt’s conjecture, (Séminaire de Théorie des Nombres. Séminaire de Théorie des Nombres, Paris 1991/1992. Séminaire de Théorie des Nombres. Séminaire de Théorie des Nombres, Paris 1991/1992, Progr. Math., vol. 116 (1993), Birkhäuser Boston: Birkhäuser Boston Boston), 37-62 · Zbl 1043.19500
[32] Kolster, M., \(K\)-theory and Arithmetic, (Contemporary Developments in Algebraic \(K\)-Theory. Contemporary Developments in Algebraic \(K\)-Theory, Lectures given at the School and Conference on Algebraic \(K\)-Theory and its Applications, Trieste, July 2002. Contemporary Developments in Algebraic \(K\)-Theory. Contemporary Developments in Algebraic \(K\)-Theory, Lectures given at the School and Conference on Algebraic \(K\)-Theory and its Applications, Trieste, July 2002, Lecture Notes in Math., vol. 15 (2003), Springer: Springer New York), 191-258 · Zbl 1071.19002
[33] Kolster, M.; Movahhedi, A., Galois co-descent for capitulation kernels of totally real number fields, Ann. Sci. Inst. Fourier, 50, 35-65 (2000) · Zbl 0951.11029
[34] Nguyen Quang Do, T., Analogues supérieurs du noyau sauvage, J. Théor. Nombres Bordeaux, 4, 263-271 (1992) · Zbl 0783.11042
[35] Nguyen Quang Do, T., \(K_3\) et formules de Riemann-Hurwitz, \(K\)-Theory, 7, 429-441 (1993) · Zbl 0801.11049
[37] Quillen, D., Higher algebraic \(K\)-theory, (Proc. Intern. Congress Math., vol. 1. Proc. Intern. Congress Math., vol. 1, Vancouver, 1974 (1975), Canad. Math. Soc.), 171-176 · Zbl 0359.18014
[38] Schneider, P., Über gewisse Galoiscohomologiegruppen, Math. Z., 168, 181-205 (1979) · Zbl 0421.12024
[39] Soulé, C., \(K\)-théorie des anneaux d’entiers des corps de nombres et cohomologie étale, Invent. Math., 55, 251-295 (1979) · Zbl 0437.12008
[40] Tate, J., Relations between \(K_2\) and Galois cohomology, Invent. Math., 36, 257-274 (1976) · Zbl 0359.12011
[41] Washington, L., Introduction to Cyclotomic Fields, Grad. Texts in Math., vol. 83 (1997), Springer: Springer New York, xiv+487 pp · Zbl 0966.11047
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.