Li, Yao-Tang; Chen, Fu-Bin; Wang, De-Feng New lower bounds on eigenvalue of the Hadamard product of an \(M\)-matrix and its inverse. (English) Zbl 1163.15019 Linear Algebra Appl. 430, No. 4, 1423-1431 (2009). The main results which improve some earlier ones are the following. Let \(A= (a_{ij}) \in\mathbb R^{n \times n} \) be an \(M\)-matrix and \(\tau (A \circ A^{-1})\) be the minimum eigenvalue of the Hadamard product of \(A\) and \(A^{-1}\). Then \(\tau (A \circ A^{-1}) \geqslant \min _i\{{1-\frac{1} {{a_{ii}}}\sum_{j \neq i} {|{a_{ji} }|m_{ji}}}\}\), where \(m_{ji}= \frac{{|{a_{ji}}|+ \sum_{k \neq j,i} {|{a_{jk}}|r_i }}} {{a_{jj}}}\), \(j \neq i\), \(j\in\mathbb N\); \(r_i= \max _{l \neq i} \frac{{|{a_{li}}|}} {{|{a_{ll}}|- \sum_{k\neq l,i} {|{a_{lk}}|}}}\). In addition let \(A^{-1}\) be doubly stochastic. Then \(\tau(A\circ A^{-1}) \geqslant \min _i \{{\frac{{a_{ii}-m_i \sum_{k\neq i} {|{a_{ik}}|}}} {{1+ \sum_{j \neq i} {m_{ji}}}}}\}\). Reviewer: Mihail Voicu (Iaşi) Cited in 2 ReviewsCited in 18 Documents MSC: 15A42 Inequalities involving eigenvalues and eigenvectors 15A15 Determinants, permanents, traces, other special matrix functions 15B48 Positive matrices and their generalizations; cones of matrices 15B51 Stochastic matrices 15A09 Theory of matrix inversion and generalized inverses Keywords:nonnegative matrix; \(M\)-matrix; Hadamard product; minimum eigenvalue; lower bounds; doubly stochastic PDF BibTeX XML Cite \textit{Y.-T. Li} et al., Linear Algebra Appl. 430, No. 4, 1423--1431 (2009; Zbl 1163.15019) Full Text: DOI References: [1] Young, D. M., Iterative Solution of Large Linear Systems (1971), Academic Press: Academic Press New York · Zbl 0204.48102 [2] Fiedler, M.; Markham, T. L., An inequality for the Hadamard product of an \(M\)-matrix and inverse \(M\)-matrix, Linear Algebra Appl., 101, 1-8 (1988) · Zbl 0648.15009 [3] Fiedler, M.; Johnson, C. R.; Markham, T.; Neumann, M., A trace inequality for \(M\)-matrices and the symmetrizability of a real matrix by a positive diagonal matrix, Linear Algebra Appl., 71, 81-94 (1985) · Zbl 0597.15016 [4] Yong, X. R., Proof of a conjecture of Fiedler and Markham, Linear Algebra Appl., 320, 167-171? (2000) · Zbl 0968.15011 [5] Song, Y. Z., On an inequality for the Hadamard product of an \(M\)-matrix and its inverse, Linear Algebra Appl., 305, 99-105 (2000) · Zbl 0946.15014 [6] Chen, S. C., A lower bound for the minimum eigenvalue of the Hadamard product of matrix, Linear Algebra Appl., 378, 159-166 (2004) · Zbl 1058.15024 [7] Li, H. B.; Huang, T. Z.; Shen, S. Q.; Li, H., Lower bounds for the eigenvalue of Hadamard product of an \(M\)-matrix and its inverse, Linear Algebra Appl., 420, 235-247 (2007) · Zbl 1172.15008 [8] Huang, R., Some inequalities for the Hadamard product and the Fan product of matrices, Linear Algebra Appl., 428, 1551-1559 (2008) · Zbl 1163.15017 [9] Varga, R. S., Minimal Gerschgorin sets, Pacific J. Math., 15, 2, 719-729 (1965) · Zbl 0168.02904 [10] Yong, X. R.; Wang, Z., On a conjecture of Fiedler and Markham, Linear Algebra Appl., 288, 259-267 (1999) · Zbl 0931.15014 [11] Sinkhorn, R., A relationship between arbitrary positive matrices and doubly stochastic matrices, Ann. Math. Statist., 35, 876-879 (1964) · Zbl 0134.25302 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.