## New lower bounds on eigenvalue of the Hadamard product of an $$M$$-matrix and its inverse.(English)Zbl 1163.15019

The main results which improve some earlier ones are the following. Let $$A= (a_{ij}) \in\mathbb R^{n \times n}$$ be an $$M$$-matrix and $$\tau (A \circ A^{-1})$$ be the minimum eigenvalue of the Hadamard product of $$A$$ and $$A^{-1}$$. Then $$\tau (A \circ A^{-1}) \geqslant \min _i\{{1-\frac{1} {{a_{ii}}}\sum_{j \neq i} {|{a_{ji} }|m_{ji}}}\}$$, where $$m_{ji}= \frac{{|{a_{ji}}|+ \sum_{k \neq j,i} {|{a_{jk}}|r_i }}} {{a_{jj}}}$$, $$j \neq i$$, $$j\in\mathbb N$$; $$r_i= \max _{l \neq i} \frac{{|{a_{li}}|}} {{|{a_{ll}}|- \sum_{k\neq l,i} {|{a_{lk}}|}}}$$. In addition let $$A^{-1}$$ be doubly stochastic. Then $$\tau(A\circ A^{-1}) \geqslant \min _i \{{\frac{{a_{ii}-m_i \sum_{k\neq i} {|{a_{ik}}|}}} {{1+ \sum_{j \neq i} {m_{ji}}}}}\}$$.

### MSC:

 15A42 Inequalities involving eigenvalues and eigenvectors 15A15 Determinants, permanents, traces, other special matrix functions 15B48 Positive matrices and their generalizations; cones of matrices 15B51 Stochastic matrices 15A09 Theory of matrix inversion and generalized inverses
Full Text:

### References:

  Young, D. M., Iterative Solution of Large Linear Systems (1971), Academic Press: Academic Press New York · Zbl 0204.48102  Fiedler, M.; Markham, T. L., An inequality for the Hadamard product of an $$M$$-matrix and inverse $$M$$-matrix, Linear Algebra Appl., 101, 1-8 (1988) · Zbl 0648.15009  Fiedler, M.; Johnson, C. R.; Markham, T.; Neumann, M., A trace inequality for $$M$$-matrices and the symmetrizability of a real matrix by a positive diagonal matrix, Linear Algebra Appl., 71, 81-94 (1985) · Zbl 0597.15016  Yong, X. R., Proof of a conjecture of Fiedler and Markham, Linear Algebra Appl., 320, 167-171? (2000) · Zbl 0968.15011  Song, Y. Z., On an inequality for the Hadamard product of an $$M$$-matrix and its inverse, Linear Algebra Appl., 305, 99-105 (2000) · Zbl 0946.15014  Chen, S. C., A lower bound for the minimum eigenvalue of the Hadamard product of matrix, Linear Algebra Appl., 378, 159-166 (2004) · Zbl 1058.15024  Li, H. B.; Huang, T. Z.; Shen, S. Q.; Li, H., Lower bounds for the eigenvalue of Hadamard product of an $$M$$-matrix and its inverse, Linear Algebra Appl., 420, 235-247 (2007) · Zbl 1172.15008  Huang, R., Some inequalities for the Hadamard product and the Fan product of matrices, Linear Algebra Appl., 428, 1551-1559 (2008) · Zbl 1163.15017  Varga, R. S., Minimal Gerschgorin sets, Pacific J. Math., 15, 2, 719-729 (1965) · Zbl 0168.02904  Yong, X. R.; Wang, Z., On a conjecture of Fiedler and Markham, Linear Algebra Appl., 288, 259-267 (1999) · Zbl 0931.15014  Sinkhorn, R., A relationship between arbitrary positive matrices and doubly stochastic matrices, Ann. Math. Statist., 35, 876-879 (1964) · Zbl 0134.25302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.